• Title/Summary/Keyword: Carbon dioxide (CO2)

Search Result 1,972, Processing Time 0.041 seconds

Effects of Temperature and Humidity on NDIR CO2 Gas Sensor (비분산 적외선 이산화탄소 가스센서 특성의 온·습도 영향)

  • Kim, JinHo;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.179-185
    • /
    • 2017
  • This article describes the characteristics of nondispersive infrared carbon dioxide gas sensor according to the temperatures and humidifies. In this researches, a thermopile sensor that included application-specific integrated circuit (ASIC) was used and the White-cell structure was implemented as an optical waveguide. The developed sensor modules were installed in gas chamber and then the temperature of gas chamber has been increased from 283 K to 313 K with 10K temperature step. In order to analyze the effects of humidity levels, the relative humidity levels were changed from 30 to 80%R.H. with small humidifier. Then, the characteristics of sensor modules were acquired with the increment of carbon dioxide concentrations from 0 to 2,000 ppm. When the initial voltages of sensors were compared before and after humidifying the chamber at constant temperature, the decrements of the output voltages of sensors are like these: 9mV (reference infrared sensor), 41 mV (carbon dioxide sensor), 2 mV (temperature sensor). With the increment of ambient temperature, the averaged output voltage of carbon dioxide sensor was increased 19 mV, however, when the humidity level was increased, it was decreased 14mV. Based upon the experimental results, the humidity effect could be alleviated by the increment of temperature, so the effects of humidity and temperature could be only compensated by the ambient temperature itself. The estimated carbon dioxide concentrations showed 10% large errors below 200 ppm, however, the errors of the estimations of carbon dioxide concentrations were less than ${\pm}5%$ from 400 to 2,000 ppm.

Variation Analysis of CO2 Concentrations at Sunset before and after of Summer Season at the Foreshore (갯벌에서 여름철 일몰 전후 이산화탄소 농도 변동 분석)

  • Kang, Dong Hwan;Kwon, Byung Hyuk;Kim, Park Sa
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.399-407
    • /
    • 2014
  • In this study, before and after sunset carbon dioxide concentration and air temperature were observed in two points of atmosphere (lower observation point of the GL + 0.1 m, the upper observation point of GL + 1.0 m) on the foreshore at located in Suncheon Bay and their variations were analyzed. Observation was performed on the foreshore on 2~4 August 2010. Instrument (VAISALA, GMP343) was set two hours before sunset and then observation was made continuously for six hours. In three days, observed carbon dioxide concentration was 375~419 ppm, and the air temperature was in the range of $28.7{\sim}32.5^{\circ}C$. The average concentration of carbon dioxide was 388~399 ppm in the upper observation point and 386~396 ppm in the lower observation point. It was higher in the upper observation point and its fluctuations were similar in two observation points. Correlation coefficients between carbon dioxide concentration and air temperature in the upper observation point were in the range of -0.64~-0.88, and were calculated -0.65 to -0.90 in the lower observation point. For the carbon dioxide concentration, correlation coefficients between the upper part and the lower part were very high as 0.98 in three times. For the air temperature, correlation coefficients between the upper part and the lower part were very high as 0.97 and 0.99. In the same observation time, the slope of the linear regression function as carbon dioxide concentration in the lower observation point for the upper observation point was in the range of 0.97~1.01. Carbon dioxide concentration was slightly higher in the upper observation point. Because carbon dioxide in the lower observation point was closer on the surface of the foreshore and absorbed from atmosphere to the foreshore. In this study, it was showed that the vertical variation of carbon dioxide concentration was insignificant in the several meter scale of atmosphere on the surface of the foreshore.

Adsorption and Desorption Characteristics of Carbon Dioxide at Low Concentration on Zeolite 5A and 13X (제올라이트 5A와 13X의 저농도 이산화탄소 흡착 및 탈착특성)

  • Cho, Young-Min;Lee, Ji-Yun;Kwon, Soon-Bark;Park, Duck-Shin;Choi, Jin-Sik;Lee, Ju-Yeol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.191-200
    • /
    • 2011
  • A way to adsorptively remove indoor carbon dioxide at relatively lower concentration under ambient temperature was studied. A small lab-scale carbon dioxide adsorption and desorption reactors were prepared, and 5A and 13X zeolites were packed in this reactors to investigate their adsorption and desorption characteristics. The inflow carbon dioxide concentration was controlled to 5,000 ppm, relatively higher concentration found in indoor spaces with air quality problems, by diluting carbon dioxide with nitrogen gas. The flow rate was varied as 1~5 L/min, and the carbon dioxide concentration after this reactor was constantly monitored to examine the adsorption characteristics. It was found that 5A adsorbed more carbon dioxide than 13X. A lab-scale carbon dioxide desorption reactor was also prepared to investigate the desorption characteristics of zeolites, which is essential for the regeneration of used zeolites. The desorption temperature was varied as $25{\sim}200^{\circ}C$, and the desorption pressure was varied as 0.1~1.0 bar. Carbon dioxide desorbed better at higher temperature, and lower pressure. 5A could be regenerated more than three times by thermal desorption at $180^{\circ}C$. It is required to modify zeolites for higher adsorption and better regeneration performances.

Absorption of Carbon Dioxide into Polar Solvents of 2-Amino-2-Methyl-1-Propanol (2-Amino-2-Methyl-1-Propanol이 용해한 극성 용매에서 이산화탄소의 흡수)

  • Son, Young-Sik;Heo, Nam-Hwan;Lee, Sung-Su;Park, Sang-Wook
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.380-385
    • /
    • 2009
  • The absorption rate of carbon dioxide with 2-amino-2-methyl-1-propanol(AMP) was measured in such non-aqueous solvents as methanol, ethanol, n-propanol, n-butanol, ethylene glycol, propylene glycol, and propylene carbonate, and in water at 298 K and 101.3 kPa using a semi-batch stirred tank with a plane gas-liquid interface. The overall reaction rate constant, obtained under the condition of fast reaction regime, from the measured rate of absorption was used to get the elementary reaction rate constants in complicated reactions represented by reaction mechanism of carbamate formation and the order of overall reaction of $CO_2$ with amine. The correlation between the elementary reaction rate constant and the solubility parameter of the solvent was also presented.

An Experimental Study on Heat Transfer and Pressure Drop Characteristics during Supercritical Process of Carbon Dioxide in a Horizontal Tube (수평관 내에서 이산화탄소 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 최이철;강병하;김석현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.414-420
    • /
    • 2004
  • The heat transfer and pressure drop characteristics associated with the gas cooling of the supercritical carbon dioxide in a horizontal tube have been investigated experimentally. This problem is of particular interest in the design of a gas cooler of cooling systems using $CO_2$refrigerant. The test section is consisted of 6 series of 455 mm in length, 4.15 mm ID copper tube, respectively. The effects of the inlet temperature, pressure and mass flow rate on the heat transfer and pressure drop of $CO_2$in a horizontal tube is studied in detail. The heat transfer coefficient of $CO_2$is varied by temperature, inlet pressure, and mass flow rate of $CO_2$. This has maximum value at near the pseudocritical temperature. The pressure drop is changed by inlet pressure and mass flow rate of $CO_2$. The results have been compared with those of previous work. The heat transfer correlation at the supercritical gas cooling process is also suggested.

A Simulation Study on SCR(Steam Carbon Dioxide Reforming) Process Optimization for Fischer-Tropsch Synthesis (Fischer-Tropsch 합성용 SCR(Steam Carbon Dioxide Reforming) 공정 최적화 연구)

  • Kim, Yong Heon;Koo, Kee Young;Song, In Kyu
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.700-704
    • /
    • 2009
  • A simulation study on SCR(steam carbon dioxide reforming) in gas-to-liquid(natural gas to Fischer-Tropsch synthetic fuel) process was carried out in order to find optimum reaction conditions for SCR experiment. Optimum operating conditions for SCR process were determined by changing reaction variables such as temperature and $CH_4/steam/CO_2$ feed ratio. Simulation was carried out by Aspen Plus. During the simulation, overall process was assumed to proceed under steady-state conditions. It was also assumed that physical properties of reaction medium were governed by RKS(Redlich-Kwong-Soave) equation. Optimum simulation variables such as temperature and feed ratio were determined by considering $H_2/CO$ ratio for FTS(Fischer-Tropsch synthesis), $CH_4$ conversion, and $CO_2$ conversion. Simulation results showed that optimum reaction temperature and $CH_4/steam/CO_2$ feed ratio in SCR process were $850^{\circ}C$ and 1.0/1.6/0.7, respectively. Under optimum temperature of $850^{\circ}C$, $CH_4$ conversion and $CO_2$ conversion were found to be 99% and 49%, respectively.

Analysis of the Effect of Autonomous Driving of Waste Vehicles on CO2 Emission using Macroscopic Model (거시모형을 이용한 폐기물 차량 자율주행이 이산화탄소 배출량에 미치는 영향 분석)

  • Yoon, Byoungjo;Hong, Kiman
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.165-175
    • /
    • 2021
  • Purpose: The purpose of this study is to quantitatively present the carbon dioxide(CO2) emission change according to the application of autonomous driving technology at the network level for waste vehicles in the metropolitan area. Method: The target year was set to 2030, and the analysis method estimated the carbon dioxide (CO2) emissions for each road link through user equilibrium assignment when unapplied scenario. The application scenario performed traffic assignment using route data on the premise that the group was running in accordance with the application of autonomous driving technology to waste vehicles. In addition, the other means estimated the carbon dioxide emissions through user balance allocation by reflecting the results of the waste vehicle allocation. Result: As a result of the analysis, carbon dioxide(CO2) emissions were found to be reduced by about 56.9ton/day from the national network level, and the Seoul metropolitan area was analyzed to be reduced by about 54.7ton/day. Conclusion: This study quantitatively presented environmental impacts among various social effects that autonomous driving technology will bring, and in the future, development of various analytical methodologies and related studies should be continuously conducted.

Development of Adsorbent for Radioactive Carbon Dioxide (고효율 방사성이산화탄소 흡착제 개발)

  • 지준화;강덕원;이재의;한재욱
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.158-161
    • /
    • 2003
  • To develop an effective adsorbent for radio active Carbon Dioxide, $^14CO_2$, which is discharged to nearby atmosphere from nuclear power plants of CANDU type, we made some preliminary adsorbents and tested their abilities of $CO_2$ removal. The chemical agents used was LiOH and we supported or impregnated it on the surface or the internal volume of activated Carbon(GW-H). The physical and chemical properties of various adsorbents were measured using methods such as XRD, BET. SEM images were taken to investigate the change of surface morphology of the adsorbents. Finally, amount of $CO_2$ adsorption of them were verified under specific conditions. We found that mechanical mixing of LiOH and activated Carbon showed the maximum $CO_2$ removal ability, while surface activation of activated Carbon by Nitric Acid-treatment enhanced its $CO_2$ removal efficiency to some degree.

  • PDF

A study on elemental mercury adsorption behaviors of nanoporous carbons with carbon dioxide activation

  • Bae, Kyong-Min;Park, Soo-Jin
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.295-298
    • /
    • 2014
  • In this work, nanoporous carbons (NPCs) were prepared by the self-assembly of polymeric carbon precursors and block copolymer template in the presence of tetraethyl orthosilicate and colloidal silica. The NPCs' pore structures and total pore volumes were analyzed by reference to $N_2$/77 K adsorption isotherms. The porosity and elemental mercury adsorption of NPCs were increased by activation with carbon dioxide. It could be resulted that elemental mercury adsorption ability of NPCs depended on their specific surface area and micropore fraction.

Experimental study on heat transfer characteristics of supercritical carbon dioxide natural circulation

  • Wang, Pengfei;Ding, Peng;Li, Wenhuai;Xie, Rongshun;Duan, Chengjie;Hong, Gang;Zhang, Yaoli
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.867-876
    • /
    • 2022
  • An experimental study has been conducted to investigate the heat transfer characteristics of supercritical carbon dioxide (sCO2) uniformly heated in the horizontal circular smooth tube. The results illustrated that there was a significant difference in heat transfer between the top wall and bottom wall due to the buoyancy. Bulk flow acceleration cannot be negligible in the high heat flux region, which leads to heat transfer deterioration. A new heat transfer correlation is proposed, in which the buoyancy parameter and bulk flow acceleration have been taken into account. The new correlation and six classic correlations for sCO2 are examined in horizontal tubes. The comparison indicates that the new correlation has a better performance for sCO2 flowing through a horizontal heating tube under natural circulation conditions. For example, 94.9% of the calculated results using the new heat transfer correlation were within ±30% of the experimental results while only 87.9% of that using the Jackson correlation (the best of the six) were within the same error bands.