A Simulation Study on SCR(Steam Carbon Dioxide Reforming) Process Optimization for Fischer-Tropsch Synthesis

Fischer-Tropsch 합성용 SCR(Steam Carbon Dioxide Reforming) 공정 최적화 연구

  • Kim, Yong Heon (School of Chemical & Biological Engineering, Seoul National University) ;
  • Koo, Kee Young (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Song, In Kyu (School of Chemical & Biological Engineering, Seoul National University)
  • 김용헌 (서울대학교 화학생물공학부) ;
  • 구기영 (한국에너지기술연구원) ;
  • 송인규 (서울대학교 화학생물공학부)
  • Received : 2009.08.21
  • Accepted : 2009.09.01
  • Published : 2009.12.31

Abstract

A simulation study on SCR(steam carbon dioxide reforming) in gas-to-liquid(natural gas to Fischer-Tropsch synthetic fuel) process was carried out in order to find optimum reaction conditions for SCR experiment. Optimum operating conditions for SCR process were determined by changing reaction variables such as temperature and $CH_4/steam/CO_2$ feed ratio. Simulation was carried out by Aspen Plus. During the simulation, overall process was assumed to proceed under steady-state conditions. It was also assumed that physical properties of reaction medium were governed by RKS(Redlich-Kwong-Soave) equation. Optimum simulation variables such as temperature and feed ratio were determined by considering $H_2/CO$ ratio for FTS(Fischer-Tropsch synthesis), $CH_4$ conversion, and $CO_2$ conversion. Simulation results showed that optimum reaction temperature and $CH_4/steam/CO_2$ feed ratio in SCR process were $850^{\circ}C$ and 1.0/1.6/0.7, respectively. Under optimum temperature of $850^{\circ}C$, $CH_4$ conversion and $CO_2$ conversion were found to be 99% and 49%, respectively.

GTL(gas-to-liquid) 합성유 제조용 SCR(steam carbon dioxide reforming) 공정의 시뮬레이션 연구를 수행하였다. 온도 및 $CH_4/steam/CO_2$ 반응물 비와 같은 변수를 바꾸어 가면서 SCR 공정을 위한 최적 운전조건을 살펴보았다. 공정 시뮬레이션을 위해 Aspen Plus를 사용하였다. 또한 정상상태 가정하의 열역학적 물성치 계산을 위해 Aspen Plus의 RSK (Redlich-Kwong-Soave) 상태방정식을 사용하였다. FT 공정을 위한$H_2/CO$ 비, $CH_4$ 전환율, $CO_2$ 전환율을 살펴봄으로써 최적의 온도와 최적의 반응물 비를 결정하였다. 시뮬레이션 결과, SCR reformer 촉매층 출구 최적온도는 상압에서 $850^{\circ}C$ 였으며, 이 온도에서 $CH_4$ 전환율은 99%, $CO_2$ 전환율은 49%로 계산되었고, $CH_4/steam/CO_2$ 최적 반응물 비율은 1.0/1.6/0.7로 나타났다.

Keywords

Acknowledgement

Supported by : 한국에너지관리공단

References

  1. Schanke, D., Lian, P., Eri, S., Rytter, E., Sannaes, B. H. and Kinnari, K. J., "Optimization of Fischer-Tropsch Reactor Design and Operation in GTL Plant," Stud. Surf. Sci. Catal., 136, 239-244(2001) https://doi.org/10.1016/S0167-2991(01)80310-4
  2. Rostrup-Nielsen, J. R., "Production of Synthesis Gas," Catal. Today,18, 305-324(1993) https://doi.org/10.1016/0920-5861(93)80059-A
  3. Knottenbelt, C., "Mossgas Gas-to-Liquid Diesel Fuels-An Environmentally Friendly Option, " Catal. Today, 71, 437-445(2002) https://doi.org/10.1016/S0920-5861(01)00471-0
  4. Rostrup-Nielsen, J. R., "Syngas in Perspective," Catal. Today, 71, 243-247(2002) https://doi.org/10.1016/S0920-5861(01)00454-0
  5. Aasberg-Petersen, K., Bak Hansen, J.-H., Christensen, T. S., Dybkjaer, I., Christensen, P. S., Nielsen, C. S., Winter Madsen, S. E. L. and Rostrup-Nielsen, J. R., "Technologies for Large-Scale Gas Conversion," Appl. Catal. A, 221, 379-387(2001) https://doi.org/10.1016/S0926-860X(01)00811-0
  6. Requies, J., Cabrero, M. A., Barrio, V. L., Cambra, J. F., Güemez, M. B., Arias, P. L., La Parola, V., Peña, M. A. and Fierro, J. L. G., "Nickel/Alumina Catalysts Modified by Basic Oxides for the Production of Synthesis Gas by Methane Partial Oxidation," Catal. Today, 116, 304-312(2006) https://doi.org/10.1016/j.cattod.2006.05.084
  7. Wakasuki, T., Morita, Y., Okado, H., Inaba, K., Hirayama, H., Shimura, M., Kawazuishi, K., Iwamoto, O. and Suzuki, T., "Development of a High Efficiency GTL Process Based on $CO_2$/Steam Reforming of Natural Gas and Slurry Phase FT Synthesis," Stud. Surf. Sci. Catal., 136, 117-122(2001) https://doi.org/10.1016/S0167-2991(01)80290-1
  8. Dry, M. E., "The Fischer-Tropsch Process: 1950-2000," Catal. Today, 71, 227-241(2002) https://doi.org/10.1016/S0920-5861(01)00453-9
  9. Wilhelm, D. J., Simbeck, S. R., Karp, A. D. and Dickenson, R. L., "Syngas Production for Gas-to-Liquids Applications: Technologies, Issues and Outlook", Fuel Process Technol., 71, 139-148(2001) https://doi.org/10.1016/S0378-3820(01)00140-0
  10. Soave, G., "Equilibrium Constants from a Modified Redlich- Kwong Equation of State, " Chem. Eng. Sci., 27, 1197-1203(1972) https://doi.org/10.1016/0009-2509(72)80096-4
  11. Rostrup-Nielsen, J. R., "Syngas for C1-Chemistry: Limits of the Steam Reforming Process", Stud. Surf. Sci. Catal., 36, 73-781(1988) https://doi.org/10.1016/S0167-2991(09)60501-2
  12. Guo, J., Lou, H. and Zheng, X., "The Deposition of Coke from Methane on a Ni/MgAl2O4 Catalyst," Carbon, 45, 1314-1321(2007) https://doi.org/10.1016/j.carbon.2007.01.011