• Title/Summary/Keyword: Carbon and nitrogen source

Search Result 778, Processing Time 0.028 seconds

Characterization of Catechol l,2-Dioxygenase Purified from the Benzoate Degrading Bacterium, Pseudomonas sp. NFQ-l Isolated from Dead Coal Pit Areas (폐광지역에서 분리한 Benzoate 분해세균 Pseudomonas sp. NEQ-1에서 정제된 Catechol 1,2-Dioxygenase의 특성)

  • Joo Jung-Soo;Yoon Kyung-Ha
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.275-281
    • /
    • 2004
  • Our previous research has demonstrated that the bacterium, Pseudomonas sp. NFQ-l capable of utilizing quin­oline (2,3-benzopyridine) as the sole source of carbon, nitrogen, and energy was isolated and characterized [Yoon et ai. (2003) Kor. J. Biotechnol. Bioeng. 18(3):174-179]. In this study, we have found that Pseudomonas sp. NFQ-l could degrade quinoline as well as benzoate, and extended this work to characterize the catechol 1,2­dioxygenase (C1,2O) purified from the bacterium cultured in benzoate media. Initially, C1,2O has been purified by ammonium sulfate precipitation, gel permeation chromatography, and Source 15Q. After Source 15Q, puri­fication fold was increased to approximately 14.21 unit/mg. Molecular weight of C1,2O was about 33 kDa. Physicochemical characteristics (e.g., substrate specificity, Km, Vmax, pH, temperature and effect of inhibitors) of purified C1,2O were examined. C1,2O demonstrated the activity for catechol, 4-methylcatechol and 3-meth­ylcatechol as a substrate, respectively. The Km and Vmax value of C1,2O for catechol was 38.54 ${\mu}M$ and $25.10\;{\mu}mol{\cdot}min^{-1}{\cdot}mg^{-1}.$ The optimal temperature of C1,2O was $30^{\circ}C$ and the optimal pH was approximately 8.5. Metal ions such as $Ag^+,\;Hg^+,\;Ca^{2+},\;and\;Cu^{2+}$ show the inhibitory effect on the activity of C1,2O. N-terminal amino sequence of C1,2O was analyzed as ^1TVKISQSASIQKFFEEA^{17}.$ In this work, we found that the amino acid sequence of NFQ-l showed the sequence homology of 82, 71, 59 and $53\%$ compared with C1,2O from Pseudomonas aeruginosa PA0l, Pseudomonas arvilla C-1., P. putida KT2440 and Pseudomonas sp. CA10, respectively.

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF

Change in Fertilizer Characteristics during Fermenting Process of Organic Fertilizer and Effect on Lettuce Growth (혼합발효 유기질비료의 제조과정 중 비료 특성 변화 및 상추 생육에 미치는 영향)

  • An, Nan-Hee;Lee, Sang-min;Oh, Eun-mi;Lee, Cho-Rong;Gong, Min-Jae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.3
    • /
    • pp.27-36
    • /
    • 2020
  • This study investigates the changes in inorganic composition and the microbial counts during the process of fermentation of mixed domestic organic resources for the development of alternatives for imported oil cake, and examines the characteristics of mixed fermentation organic fertilizer (MFOF). The effect of the MFOF on the lettuce growth is investigated in order to evaluate the possibility of replacing the existing mixed oil cake with the MFOF. Six kinds of domestic by-product resources, which are rice bran, distiller's dried grains, sesame meal, fish meal, and spent mushroom substrate, are mixed by mixing ratio and the composition was analyzed during the fermentation process for 90 days under moisture content 30% and sealed condition. During the 90 days of fermentation, the pH change of the MFOF was little, and the moisture content was maintained at 34-35% until the 60th day of fermentation, and then decreased to 30-31% on the 90th day. Total nitrogen content remained unchanged during the fermentation period, but total carbon content showed a significant difference on the 21st day of fermentation. It was confirmed that the content of fertilizer composition (nitrogen, phosphate, and potash) of the MFOF was 8.7% or more, which is suitable for the minimum amount standard of the main nutrients to be contained in the organic fertilizer. During the fermentation process of organic fertilizer, the density of bacteria and actinomycetes increased until 60 days and 30 days, respectively, and thereafter little changes were shown, and fungal population showed an increasing trend. As a result of lettuce cultivation test in the greenhouse by applying the MFOF, the growth and yield were comparable to that of using the existing mixed oil cake fertilizer when 100% was applied based on crop standard nitrogen fertilizer level. The use of mixed fermentation organic fertilizer made with domestic by-product resources can be used for use in farms in the future and is expected to contribute to the stable production of environment friendly agricultural products.

Biology and Health Aspects of Molds in Foods and the Environment

  • Bullerman, Lloyd-B.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.359-366
    • /
    • 1993
  • Molds are eucaryotic, multicellular, multinucleate, filamentous organisms that reproduce by forming asexual and sexual spores. The spores are readily spread through the air and because they are very light-weight and tend to behave like dust particles, they are easily disseminated on air currents. Molds therefore are ubiquitous organisms that are found everywhere, throughout the environment. The natural habitat of most molds is the soil where they grow on and break down decaying vegetable matter. Thus, where there is decaying organic matter in an area, there are often high numbers of mold spores in the atmosphere of the environment. Molds are common contaminants of plant materials, including grains and seeds, and therefore readily contaminate human foods and animal feeds. Molds can tolerate relatively harsh environments and adapt to more severe stresses than most microorganisms. They require less available moisture for growth than bacteria and yeasts and can grow on substrates containing concentrations of sugar or salt that bacteria can not tolerate. Most molds are highly aerobic, requiring oxygen for growth. Molds grow over a wide temperature range, but few can grow at extremely high temperatures. Molds have simple nutritional requirements, requiring primarily a source of carbon and simple organic nitrogen. Because of this, molds can grow on many foods and feed materials and cause spoilage and deterioration. Some molds ran produce toxic substances known as mycotoxins, which are toxic to humans and animals. Mold growth in foods can be controlled by manipulating factors such as atmosphere, moisture content, water activity, relative humidity and temperature. The presence of other microorganisms tends to restrict mold growth, especially if conditions are favorable for growth of bacteria or yeasts. Certain chemicals in the substrate may also inhibit mold growth. These may be naturally occurring or added for the purpose of preservation. Only a relatively few of the approximately 100,000 different species of fungi are involved in the deterioration of food and agricultural commodities and production of mycotoxins. Deteriorative and toxic mold species are found primarily in the genera Aspergillus, Penicillium, Fusarium, Alternaria, Trichothecium, Trichoderma, Rhizopus, Mucor and Cladosporium. While many molds can be observed as surface growth on foods, they also often occur as internal contaminants of nuts, seeds and grains. Mold deterioration of foods and agricultural commodities is a serious problem world-wide. However, molds also pose hazards to human and animal health in the form of mycotoxins, as infectious agents and as respiratory irritants and allergens. Thus, molds are involved in a number of human and animal diseases with serious implication for health.

  • PDF

Decomposition and Nutrient Dynamics of Leaf Litter of Camellia japonica L. in Korea (동백나무(Camellia japonica L.) 낙엽의 분해와 영양원소의 동태)

  • Cha, Sangsub;Lee, Kyung-Eui;Lee, Sang-Hoon;Choi, Moonjong;Shim, Jae Kuk
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.1
    • /
    • pp.110-117
    • /
    • 2016
  • Litter fall is a source of nutrients and carbon transfer in terrestrial ecosystems. Litter decomposition provides nutrients needed for plant growth, sustains soil fertility, and supplies $CO_2$ to the atmosphere. We collected the leaf litter of evergreen broadleaf tree, Camellia japonica L., and carried out a decomposition experiment using the litterbag method in Ju-do, Wando-gun, Korea for 731 days from Dec 25, 2011 to Dec 25, 2013. The leaf litter of C. japonica remained 42.6% of the initial litter mass after experiment. The decay constant (k) of C. japonica leaf litter was $0.427yr^{-1}$. The carbon content of C. japonica leaf litter was 44.6%, and the remaining carbon content during the decomposition tended to coincide with the changes in litter mass. The initial nitrogen and phosphorus content was 0.47% and 324.7 mg/g, respectively. The remaining N in decaying litter increased 1.66-fold in the early decomposition stage, then gradually decreased to 1.18-fold after 731 days. The content of P showed the highest value (1.64-fold of initial content) after 456 days, which then fell to a 1.15-fold after 731 days. The remaining Ca, K, Mg and Na content in C. japonica leaf litter tended to decrease during decomposition. The remaining K showed a remaining mass of 8.9% as a result of rapid reduction. The initial C/N and C/P ratio of C. japonica leaf litter was 94.87 and 1368.5, respectively. However, it tended to decrease as decomposition progressed because of the immobilization of N and P (2.78 and 2.68-fold of initial content, respectively) during the leaf litter decaying. The study results showed that N and P was immobilized and other nutrients was mineralized in C. japonica leaf litter during experimental period.

Studies on nutrient sources, fermentation and harmful organisms of the synthetic compost affecting yield of Agaricus bisporus (Lange) Sing (양송이 수량(收量)에 미치는 합성퇴비배지(合成堆肥培地)의 영양원(營養源), 발효(醱酵) 및 유해생물(有害生物)에 관((關)한 연구(硏究))

  • Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.7 no.1
    • /
    • pp.13-73
    • /
    • 1979
  • These studies were conducted to investigate nutrient sources and supplementary materials of synthetic compost media for Agaricus bisporus culture. Investigation were carried out to establish the optimum composition for compost of Agaricus bisporus methods of out-door fermentation and peakheating with rice straw as the main substrate of the media. The incidence and flora of harmful organisms in rice straw compost and their control were also studied. 1. When rice straw was used as the main substrate in synthetic compost as a carbon source. yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw, and the total nitrogen content was high in rice straw compost. 2. Since the morphological and physico-chemical nature of Japonica and Indica types of rice straw are greatly dissimilar. there were apparent differences in the process of compost fermentation. Fermentation of Indica type straw proceeded more rapidly with a shortening the compost period, reducing the water supply, and required adding of supplementary materials for producing stable physical conditions. 3. Use of barley straw compost resulted in a smaller crop compared with rice straw. but when a 50%, barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. 4. There were extremely high positive correlations between yield of Agaricus bisporus and the total nitrogen, organic nitrogen, amino acids, amides and amino sugar nitrogen content of compost. The mycerial growth and fruit body formation were severely inhibited by ammonium nitrogen. 5. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. 6. The supplementation of organic nutrient activated compost fermentation and increased yield of Agaricus bisporus. The best sources of organic nutrients were: perilla meal, sesame meal, wheat bran and poultry manure, etc. 7. Soybean meal, tobacco powder and glutamic acid fermentation by-products which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. B. When gypsum and zeolite were added to rice straw. physical deterioration of compost due to excess moisture and caramelization was observed. The Indica type of straw was more remarkable in increase of yield of Agricus bisporus by addition of supplementing materials than Japonica straw. 9. For preparing rice straw compost, the best mixture was prepared by 10% poultry manure, 5% perilla meal, 1. 2 to 1. 5% urea and 1% gypsum. At spring cropping, it was good to add rice bran to accelerate heat generation of the compost heap. 10. There was significantly high positive correlation (r=0.97) between accumulated temperature and the decomposition degree of compost during outdoor composting. The yield was highest at accumulated temperatures between 900 and $1,000^{\circ}C$. 11. Prolonging the composting period brought about an increase in decomposition degree and total nitrogen content, but a decrease in ammonium nitrogen. In the spring the suitable period of composting was 20 to 25 days. and about 15 days in autumn. For those periods, the degree of decomposition was 19 to 24%. 12. Compactness of wet compost at filling caused an increase in the residual ammonium nitrogen. methane and organic acid during peak heating. There was negative correlation between methane content and yield (r=0.76)and the same was true between volatile organic acid and yield (r=0.73). 13. In compost with a moisture content range between 69 to 80% at filling. the higher the moisture content, the lower the yield (r=0.78). This result was attributed to a reduction in the porosity of compost at filling the beds. The optimum porosity for good fermentation was between 41 and 53%. 14. Peak heating of the compost was essential for the prevention of harmful microorganisms and insect pests. and for the removal of excess ammonia. It was necessary to continue fer mentatiion for four days after peak heating. 15. Ten species of fungi which are harmful or competitive to Agaricus bisporus were identified from the rice compost, including Diehliomyces microsporus, Trichoderma sp. and Stysanus stemoites. The frequency of occurrance was notably high with serious damage to Agaricus bisporus. 16. Diehliomyces microsporus could be controlled by temperature adjustment of the growing room and by fumigating the compost and the house with Basamid and Vapam. Trichoderma was prevented by the use of Bavistin and Benomyl. 17. Four species of nematodes and five species of mites occured in compost during out-door composting. These orgnanisms could be controlled through peakheating compost for 6 hours at $60^{\circ}C$.

  • PDF

Characterization of Endochitosanases-Producing Bacillus cereus P16

  • Jo, Yu-Young;Jo, Kyu-Jong;Jin, Yu-Lan;Jung, Woo-Jin;Kuk, Ju-Hee;Kim, Kil-Yong;Kim, Tae-Hwan;Park, Ro-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.960-968
    • /
    • 2003
  • A bacterial isolate showing a strong endochitosanase activity was isolated from soil and then characterized. The isolate was identified and designated as Bacillus cereus P16, based on morphological and biochemical properties, assimilation tests, cellular fatty acids pattern, along with 16S rRNA gene sequence. The optimized medium for producing extracellular chitosanase in a batch culture contained 1% tryptone, 0.5% chitosan, and 1% NaCl (pH 7.0). Powder chitosan and tryptone served the best as carbon and nitrogen sources, respectively, for the chitosanase production. Chitosanase activity was the highest when culture was completed at $37^{\circ}C$ among various temperatures ($20-42^{\circ}C$) tested in a shaking incubator (200 rpm). The levels of chitosanase activity in the culture fluid were 2.0 U/ml and 3.8 U/ml, respectively, when incubated in a flask for 60 h and in a jar fermenter for 24 h. The culture supernatant showed a strong liquefying activity on the soluble chitosan. The viscosity of 1% chitosan solution, that was incubated with the culture supernatant, was rapidly decreased, suggesting the secretion of endochitosanolytic enzymes by P16. The culture fluid revealed six endo-type chitosanase isozymes, two major (38 and 45 kD), and four minor (54, 65, 82, and 96 kD) forms by staining profile. The crude enzymes were very stable, and full activity was maintained for 4 weeks at $4^{\circ}C\;or\;-20^{\circ}C$ in the culture supernatant, suggesting a highly desirable stability rate for making an industrial application of the crude enzymes. The supernatant also cleaved the insoluble chitosan powder, but the hydrolysis rate was much lower. The enzymic degradation products of chitosan contained $(GlcN)_n$ (n=2-8). The concentration of chitosan in the reaction mixture of the crude enzyme affected the chitooligosaccharides composition of the hydrolysis products. When the higher concentration of chitosan was used, the higher degree of polymerized chitooligosaccharides were produced. By comparison with other commercial chitosanase preparations, P16 was indeed found to be a valuable enzyme source for industrial production of chitooligosaccharides from chitosan.

Isolation and Cultural Characterization of Antibacterial Substance Producing Microbes (항균성 물질 생산 균주의 분리 및 배양학적 특성)

  • Park, Seok-Kyu;Cho, Young-Su;Shon, Mi-Yae;Gal, Sang-Wan;Lee, Sang-Won
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.194-200
    • /
    • 2007
  • In order to enhance the functionality and storage period of traditional fermented foods, the strain CH-14, which To enhance the quality of traditional fermented foods, and to lengthen acceptable storage periods, a bacterial strain, CH-14, showing potent enzyme activities and antibacterial capabilities, was isolated and characterize4 The bacterium wn Gram-positive, catalase-positive, oxidase-negative, formed endospores, expressed flagella, was rod-shaped, and had dimensions of 0.5 0.7m and 3.5 4.2m. The bacterium CH-14 was identified as Bacillus subtilis using Bergey's Manual of Systematic Bacteriology, Bergey's Manual of Determinative Bacteriology, and an API 50 CHL Carbohydrate Test Kit. An optimum growth medium contained 2% (w/v) cellobiose as a carbon source, a mixture of 0.5% (w/v) yeast extract and 0.5% (w/v) peptone as nitrogen sources, and 0.05% (w/v) $MgSO_4{\cdot}7H_2O$. The optimal culture temperature and the optimal initial pH were in the ranges of 30 $45^{\circ}C$ and 4.5 10.0, respectively. Maximum production of the antibacterial substance occurred after 24h of culture. The minimum inhibitory concentrations of the antibacterial substance were 5mg bacterial dry weight/mL against E. coli and P. mirabilis, and 10 mg/mL against S. aureus, S. enteritidis and V. parahaemolyticus.

Microbial bioconversion of natural Philippine nut oils into a value-added hydroxy fatty acid, 7,10-dihydroxy-8(E)-octadecenoic acid (미생물 생변환을 통한 필리핀 너트유로부터 기능성 지방산 7,10-dihydroxy-8(E)-octadecenoic acid 생산)

  • Dasangrandhi, Chakradhar;Ellamar, Joel B.;Kim, Young Soon;Kim, In Hwan;Kim, Hak-Ryul
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.28-34
    • /
    • 2017
  • Biocatalytic modification of natural resources can be used to generate novel compounds with specific properties, such as higher viscosity and reactivity. The production of hydroxy fatty acids (HFAs), originally found in low quantities in plants, is a good example of the biocatalytic modification of natural vegetable oils. HFAs show high potential for application in a wide range of industrial products, including resins, waxes, nylons, plastics, lubricants, cosmetics, and additives in coatings and paintings. In a recent study, Pseudomonas aeruginosa strain PR3 was used to produce 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) from oleic acid. This present study focused primarily on the utilization of three natural nut oils obtained from the Philippines -pili nut oil (PNO), palm oil (PO), and virgin coconut oil (VCO)- to produce DOD by P. aeruginosa strain PR3. Strain PR3 produced DOD from PNO and PO only, with PNO being the more efficient substrate. An optimization study to achieve the maximum DOD yield from PNO revealed the optimal incubation time and medium pH to be 48 h and 8.0, respectively. Among the carbon sources tested, fructose was the most efficiently used, with a maximum DOD production of 130 mg/50 mL culture. Urea was the optimal nitrogen source, with a maximum product yield of 165 mg/50 mL culture. The results from this study demonstrated that PNO could be used as an efficient substrate for DOD production by microbial bioconversion.

Antifungal Activities of Pseudomonas spp. Strains Against Plant Pathogens and Optimization of Culture Conditions (식물병원성 진균에 항균 효과를 지닌 슈도모나스 균주의 항진균 활성 증진을 위한 배양조건의 최적화)

  • Chang, Seog-Won;Choi, Byung-Jin;Hong, Jeum-Kyu;Rho, Yong-Taek
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.248-254
    • /
    • 2010
  • To define the optimum conditions for the mass production of four antifungal Pseudomonas spp. isolated from soil, we have investigated culture conditions and effects of various nutrient sources on the bacterial growth and evaluated antagonistic activity against Rhizoctonia solani and Sclerotinia homoeocarpa, plant pathogens. The optimum temperature and pH for the growth of these isolates were determined as pH 7.0 and $20^{\circ}$ or $25^{\circ}C$, respectively. Sucrose, tryptone, and $K_2HPO_4$ generally were more adequate for better growth as carbon, nitrogen and mineral source, respectively. The nutrient sources were also found to be very effective for high antifungal activities against R. solani and S. homoeocarpa. It was elucidated that YUD-F group (P. mandelii and P. fluorescens), which inhabit regions at relatively low temperature, had more broad spectrum and higher antifungal activity than YUD-O group (P. trivialis and P. jessenii) generally against R. solani and S. homoeocarpa. It is thought that the differences of the average temperature in the various habitats of Pseudomonas spp. influence the optimal growth temperature and antifungal activity. Especially, Pseudomonas spp. of YUD-O group showed the better antifungal activity against dollar spot caused by S. homoeocarpa, but showed relatively weaker antifungal activity against brown patch caused by R. solani.