Antifungal Activities of Pseudomonas spp. Strains Against Plant Pathogens and Optimization of Culture Conditions

식물병원성 진균에 항균 효과를 지닌 슈도모나스 균주의 항진균 활성 증진을 위한 배양조건의 최적화

  • Chang, Seog-Won (Bio-Regional Innovation Center, Youngdong University) ;
  • Choi, Byung-Jin (Department of Biomedical Science, Youngdong University) ;
  • Hong, Jeum-Kyu (Department of Horticultural Sciences, Jinju National University) ;
  • Rho, Yong-Taek (Bio-Regional Innovation Center, Youngdong University)
  • 장석원 (영동대학교 바이오지역혁신센터) ;
  • 최병진 (영동대학교 의생명과학과) ;
  • 홍점규 (진주대학교 원예학과) ;
  • 노용택 (영동대학교 바이오지역혁신센터)
  • Received : 2010.08.04
  • Accepted : 2010.09.27
  • Published : 2010.09.30

Abstract

To define the optimum conditions for the mass production of four antifungal Pseudomonas spp. isolated from soil, we have investigated culture conditions and effects of various nutrient sources on the bacterial growth and evaluated antagonistic activity against Rhizoctonia solani and Sclerotinia homoeocarpa, plant pathogens. The optimum temperature and pH for the growth of these isolates were determined as pH 7.0 and $20^{\circ}$ or $25^{\circ}C$, respectively. Sucrose, tryptone, and $K_2HPO_4$ generally were more adequate for better growth as carbon, nitrogen and mineral source, respectively. The nutrient sources were also found to be very effective for high antifungal activities against R. solani and S. homoeocarpa. It was elucidated that YUD-F group (P. mandelii and P. fluorescens), which inhabit regions at relatively low temperature, had more broad spectrum and higher antifungal activity than YUD-O group (P. trivialis and P. jessenii) generally against R. solani and S. homoeocarpa. It is thought that the differences of the average temperature in the various habitats of Pseudomonas spp. influence the optimal growth temperature and antifungal activity. Especially, Pseudomonas spp. of YUD-O group showed the better antifungal activity against dollar spot caused by S. homoeocarpa, but showed relatively weaker antifungal activity against brown patch caused by R. solani.

골프 코스 잔디 뿌리부근의 토양으로부터 분리된 4종 Pseudomonas spp.의 배양조건과 잔디에 갈색마름병의 원인이 되는 R. solani와 동전마름병의 원인이 되는 S. homoeocarpa에 대한 항진균 활성을 조사하였다. 배양조건으로는 pH 7.0으로 $20-25^{\circ}C$에서 배양할 때 생육도 우수하며 양호한 항진균 활성을 나타내었다. 대량배양을 위한 기본배지로 King's B 배지를 사용하였으며 탄소원으로 sucrose를, 질소원으로 tryptone을, 무기염류로는 $K_2HPO_4$를 첨가하였을 때 균의 생육이 가장 우수하며 항진균 활성도 높았다. 갈색마름병과 동전마름병에 대해 전반적인 항진균 활성의 경우, 상대적으로 낮은 온도의 지역에서 생존하는 YUD-F군(P. mandelii와 P. fluorescens)의 Pseudomonas spp.가 YUD-O군(P. trivialis와 P. jessenii)의 Pseudomonas spp. 보다 항진균 활성이 보편적으로 넓게 작용하고 있음을 알 수 있다. 이는 지역별 평균 기온차가 각각의 Pseudomonas spp.의 최적 생육온도와 항진균 활성에 영향을 주고 있는 것으로 보여 진다. YUD-O군의 Pseudomonas spp.는 동전마름병에 대해 우수한 항진균성을 보이지만, 갈색마름병에 대해선 상대적으로 약한 항진균 활성을 보여주고 있다.

Keywords

References

  1. Adesina, M.F., R. Grosch, A. Lembke, T.D. Vatchev, and K. Smalla. 2009. In vitro antagonists of Rhizoctonia solani tested on lettuce: rhizosphere competence, biocontrol efficiency and rhizosphere microbial community response. FEMS Microbiol. Ecol. 69, 62-74. https://doi.org/10.1111/j.1574-6941.2009.00685.x
  2. Banger, M.G. and L.S. Thomashow. 1999. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens q2-87. J. Bacteriol. 181, 3155-3163.
  3. Cha, M.S., E.G. Lim, K.H. Lee, S.J. Cho, H.J. Son, and S.J. Lee. 2002. Optimal culture conditions for production of environmentfriendly biosurfactant by Pseudomonas sp. EL-G527. J. Environ. Sci. 11, 177-182. https://doi.org/10.5322/JES.2002.11.3.177
  4. Chang, S.W., T.H. Chang, B.J. Choi, J.H. Song, K.S. Park, and Y.T. Rho. 2009. Antagonistic effects of Pseudomonas sp. against turfgrass pathogenic soil fungi. Kor. Turfgrass Sci. 23, 209-218.
  5. Chang, S.W., B.J. Choi, and Y.T. Rho. 2010. Isolation, mass production of Pseudomonas sp. and antifungal activity against turfgrass soil pathogens. (Abstract presented at the 2010 Annual winter meeting of the Korean Society of Turfgrass, Koyang, Korea, January 27).
  6. Compant, S., B. Duffy, J. Nowak, C. Clement, and E.A. Barka. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71, 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  7. Duffy, B.K. and G. Defago. 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens buocontrol strains. Appl. Environ. Microbiol. 65, 2429-2438.
  8. Handelsman, J. and E.V. Stabb. 1996. Biocontrol of soilborne plant pathogen. The Plant Cell 8, 1855-1869. https://doi.org/10.1105/tpc.8.10.1855
  9. Hwang, Y.S., J.S. Choi, and Y.H. Kim. 1996. Control effects of microbial products on pythium blight, brown patch and dollar spot of creeping bentgrass. Korean J. Plant Pathol. 12, 237-244.
  10. Jo, Y.K., S.W. Chang, M. Boehm, and G. Jung. 2008. Rapid development of fungicide resistance by Sclerotinia homoeocarpa on turfgrass. Phytopathology 98, 1297-1304. https://doi.org/10.1094/PHYTO-98-12-1297
  11. Johansson, P.M. and S.A.I. Wright. 2003. Low-temperature isolation of disease-suppressive bacteria and characterization of a distinctive group of Pseudomonads. Appl. Environ. Microbiol. 69, 6464-6474. https://doi.org/10.1128/AEM.69.11.6464-6474.2003
  12. Jung, H.K. and S.D. Kim. 2004. Selection and antagonistic mechanism of Pseudomonas fluorescens 4059 against phytophthora blight disease. Kor. J. Microbiol. Biotechnol. 32, 312-316.
  13. Kim, D.W., J.T. Kim, S.W. Choi, K.H. Choi, I.S. So, and C.H. Park. 2002. Characterization and optimal condition for mass production of Sterptomyces kasugaensis A12. Kor. J. Hort. Sci. Technol. 20, 54-59.
  14. King, E.O., M.K. Ward, and D.E. Raney. 1954. Two simple media for demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44, 301-307.
  15. Lee, K.M., O.M. Lee, M.S. Cha, E.H. Park, G.T. Park, H.J. Son, and S.J. Lee. 2002. Production and characteristics of environmentfriendly antimicrobial substance by Pseudomonas aeruginosa EL-KM. J. Environ. Sci. 11, 33-40.
  16. Le Thu Van, H., M.M. Kim, and S.K. Kim. 2008. Effect of culture conditions on cathepsin B inhibitor production by a marine barterium, Pseudomonas sp. strain PB01. J. Microbiol. Biotechnol. 18, 1115-1120.
  17. Mathre, D.E., R.J. Cook, and N.W. Callan. 1999. From discovery to use: traversing the world of commercializing biocontrol agents for plant disease control. Phytopathology 83, 972-983.
  18. Park, J.Y., H.W. Kim, H.J. Kim, O.J. Chun, S.J. Jung, W. Choi, S.W. Lee, and B.J. Moon. 2005. Cultivation conditions for mass production of an antagonistic bacterium Stenotrophomonas maltophilia BW-13. Res. Plant Dis. 11, 158-161. https://doi.org/10.5423/RPD.2005.11.2.158
  19. Scherwinski, K., R. Grosch, and G. Berg. 2008. Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiol. Ecol. 64, 106-116. https://doi.org/10.1111/j.1574-6941.2007.00421.x
  20. Shin, T.S., W.C. Jung, K.S. Do, and G.Y. Shim. 2006. Development of antagonistic microorganism for biological control of dollar spot of turfgrass. Kor. Turfgrass Sci. 20, 191-201.
  21. Song, S.K., Y.S. Jeong, and G.T. Chun. 2004. Fermentation studies on Pseudomonas aeruginosa producing antifungal secondary metabolite. Kor. J. Microbiol. Biotechnol. 32, 52-59.
  22. Stockwell, V.O. and J.P. Stack. 2007. Using Peudomonas spp. for integrated biological control. Phytopathology 97, 244-249. https://doi.org/10.1094/PHYTO-97-2-0244
  23. Weller, D.M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97, 250-256. https://doi.org/10.1094/PHYTO-97-2-0250