• Title/Summary/Keyword: turfgrass

Search Result 1,685, Processing Time 0.028 seconds

Species Selection for Composite Turfgrass (복합잔디의 구성을 위한 초종 선택)

  • Youn, Jeong-Ho;Lee, Jae-Phil;Kim, Do-Hwan;Park, Sung-Mee;Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.1
    • /
    • pp.62-66
    • /
    • 2010
  • Synthetic turfgrass was developed for longer durability than natural turfgrass. As synthetic turfgrass use increases, disadvantage was exposed and composite turfgrass was designed to reinforce disadvantage of synthetic turfgrass. However, A few researches were conducted to evaluate composite turfgrass in South Korea. Therefore, this research was conducted to select a turfgrass species to maximize practical use of composite turfgrass. In 14 Oct. 2006 synthetic turfgrass was established in the research center in Hanul Sports Turf, Inc. located Hapcheon-Gun, Gyunggnam province. Kentucky bluegrass, Tall fescue, and a mixture of Kentucky bluegrass and Perennial ryegrass were used to combine with synthetic turfgrass. Wide and narrow types of synthetic turfgrass were used. As temperature increase, coverage of tall fescue and the mixture reduced but Kentucky bluegrass had the best result of turfgrass coverage although there were no differences on turfgrass quality among types of turfgrass.

A Study on the Utilizing of Cool-season Turfgrass of Golf Courses in Korea (우리나라 골프 코스에서 한지형 잔디의 활용방안)

  • 이상재;심경구;허근영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.2
    • /
    • pp.77-84
    • /
    • 2001
  • This study was carried out to investigate the utilizing of cool-season turfgrass in areas, excluding greens, of Korean golf courses. Data collected from 120 golf courses were subjected to frequency and T-test analysis using SPSSWIN. The results obtained were as follows: 1) seventy eight golf curses were utilizing cool-season turfgrass in areas except of the greens. At thirty five golf courses (46.0%) of them, the area utilized appeared tee, green collar, green approach etc. (tee>green collar>green approach). At 37 golf courses(48.7%), a mix of Kentucky Bluegrass and Perennial Ryegrass was utilized and the ratio of the mix was 70:30(v/v). At 57 golf courses(76.0%), seed sowing was utilized. 2) In Korean golf courses, the cognition of utilizing cool-season turfgrass depended on the existence of the practice. The cognition of the experienced was more´ affirmative´ than that of the inexperienced. 3) In the experienced, the preference was determined by turfgrass quality and good appearance and recuperative rate of cool-season turfgrass. In the inexperienced, the preference was determined by turfgrass quality god appearance. 4) The experienced recommended the mix of Kentucky bluegrass and Perennial Ryegrass. 5) It seems that the golf courses having used cool-season turfgrass have difficulties in the maintenance in summer while the golf courses without using cool-season turfgrass have difficulties in the maintenance in summer and the selection of turfgrass variety.

  • PDF

Research Review on Turfgrass Disease in Korea (한국의 잔디병해 연구사)

  • Shim, Gyu Yul;Lee, Jung Han
    • Weed & Turfgrass Science
    • /
    • v.7 no.2
    • /
    • pp.87-97
    • /
    • 2018
  • Turfgrass provides various beneficial effects to our societies such as recreation, aesthetic components, and other public service. Diseases in turfgrass is the major issue, which cause quality problems in golf courses, playgrounds, parks and cultivation areas, and tremendous cost is required to prevent the diseases. Research activity and investigation for turfgrass disease remain to be further attributed when compared to other crops in Korea. In this study, we present previously reported turfgrass diseases researches, especially caused by fungal pathogens, and review the history of turfgrass research activity in Korea to contribute future turfgrass research direction. Research papers were searched and analyzed using Korea Educational and Research Information Service (www.riss.kr). More than eighty papers presented turfgrass diseases and among the papers, 50% were published in Korean Journal of Turfgrass. Half of the papers reported turfgrass diseases control. Research articles about large patch disease were the majority (36%), followed dollar spot (18%), Pythium blight (10%) and Typhular blight (8%). Number of the first disease reports in Korea were total fifteen. Total 542 fungicides have been registered in Korea to prevent turfgrass diseases and most of the fungicides were for brown patch, rust, yellow patch, dollar spot, snow mold, summer patch, anthracnose, Pythium blight, powdery mildew and algae. And we will also need to conduct ecological studies on turf diseases and to develop control methods with improved efficacy and environmentally-friend sound. Researches on epidemiology of turfgrass diseases which deals with the incidence, distribution, and interactions with other factors will be also greatly favored for precise control prescription, timing of control and use of less pesticides.

Damage Report on a Newly Recorded Coleopteran Pest, Aphanisticus congener (Coleoptera: Buprestidae) from Turfgrass in Korea

  • Kang, Byunghun;Kabir, Faisal Md.;Bae, Eun-Ji;Lee, Gwang Soo;Jeon, Byungduk;Lee, Dong Woon
    • Weed & Turfgrass Science
    • /
    • v.5 no.4
    • /
    • pp.274-279
    • /
    • 2016
  • Aphanisticus congener is a newly recorded buprestid (Coleoptera) insect pest of turfgrass in Korea. This buprestid pest was initially found from turfgrass conservation site in a greenhouse in Jinju, Gyeongnam province, Korea in July, 2014. The Aphanisticus in the family Buprestidae is a leaf miner. A. congener is the close species of A. aeneus which was firstly reported as sugarcane leaf sucker in India. A. congener was active from early July to late August in the greenhouse. Damage by the insect led to drying out and browning of turfgrass leaf because larva fed on cell sap of leaves and adult fed on leaf surface. A. congener damaged Zoysia japonica, Z. sinica, Conodon dactylon, and Poa pratensis when adults were artificially released into potted turfgrasses in the laboratory. In green house, A. congener damaged Z. japonica, Z. macrostachya, Z. matrella, Z. sinica, Conodon dactylon, and hybrid zoysiagrass. However, no damage symptoms were observed from the same turfgrass accessions in the nearby field of the greenhouse. Thus, the new coleopteran pest may be a warm-adapted pest for turfgrass, damaging turfgrass leaf only in warmer conditions.

Flooding Tolerance of Cool-Season Turfgrass for the Revegetation of Waterside Slopes (수변 비탈면 녹화를 위한 한지형잔디의 내침수성 연구)

  • Shim, Sang-Ryul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.2
    • /
    • pp.45-52
    • /
    • 2015
  • Cool-season turfgrass is a rapidly increasing of usage for the revegetation of waterside slopes in dams, lakes and rivers. The purpose of this research is to identify the flooding tolerance of cool-season turfgrass with respect to the flooding periods of 0(control), 2, 4 and 6 days, respectively. The surface coverage ratio, turfgrass injury and soil moisture content were measured to assess the flooding tolerance of cool-season turfgrass. The increase in the flooding periods with 4 and 6 days resulted in the lower surface coverage ratio for cool-season turfgrass while no significant difference was found in the 2 days flooding when compared to 0 day (the control plot) flooding plot. In case of the turfgrass injury and the soil moisture content, however, the higher values were found with the increase of flooding periods in 2, 4 to 6 days. We observed that the higher the turfgrass injury and soil moisture content increased, the lower the surface covrage ratio decreased. In these regards, we also observed that the tolerance of cool season turfgrass were high in the 2 days flooding condition, medium in the 4 days flooding condition and low in the 6 days flooding condition. The flooding tolerance of cool-season turfgrass was gradually weakened in over 2 days flooding periods due to $O_2$ deficiency in the anaerobic soil condition. Therefore, we could suggest cool-season turfgrass within 2 days flooding periods for the revegetation of waterside slopes in dams, lakes and rivers.

Analysis of Light Environment to Turfgrass Growth under the Roof Membrane on Stadium (경기장 지붕의 막구조가 잔디생육에 미치는 광환경에 대한 영향분석)

  • Joo Young Kyoo;Lee Dong Ik;Song Kyoo D.;Shim Gyu-Yul
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.3
    • /
    • pp.119-128
    • /
    • 2004
  • This study was conducted to analyze the effect of roof membrane on light environment that influence on turfgrass growth under domed stadium. Roof structure on experimental plot was constructed with PTFE and PE same as Busan Asiad Main Stadium. Tested turfgrass species were combinations of cool-season grasses(Kentucky Bluegrass, perennial ryegrass, $KBG80+PR20\%,\;KBG33+PR33+Fine fescue33\%)$ and warm-season grasses(zoysiagrass, 'An-yang middle-leaf, 'Zenith', Bermudagrass) established with seeding or sodding. The experimental set-up and research work were initiated November 1999 and finished on August 2000 at near Busan Asiad Main Stadium. By the result of computer simulation of daylight radiant energies on the turf surface were lower than needs of normal sport turf growth. The shortage of radiant resulted pest infection on cool-season grass mixture compared with warm-season. But turf color and density showed the best results on Kentucky bluegrass or its mixture plot. Over all the results showed that the best quality of turfgrass growth was occurred on full sun area, and the next was under PTFE membrane. The application of artificial lighting system may increase the turfgrass growth under domed stadium(partially) covered with roof membrane.

Herbicide Resistant Turfgrass(Zoysia japonica cv. 'Zenith') Plants by Particle bombardment-mediated Transformation

  • Lim Sun-Hyung;Kang Byung-Chorl;Shin Hong-Kyun
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.4
    • /
    • pp.211-219
    • /
    • 2004
  • Transgenic zoysiagrass (Zoysia japonica cv. Zenith) plants have been obtained by particle bombardment of embryogenic callus with the plasmid pSMABuba, which contains hygromycin resistance (hpt) and bialaphos resistance (bar) genes. Parameters on DNA delivery efficiency of the particle bombardment were partially optimized using transient expression assay of a chimeric $\beta-glucuronidase$(gusA) gene driven by the CaMV 35S promoter. Stably transfarmed zoysiagrass plants were recovered with a selection scheme using hygromycin. Transgenic zoysiagrass plants were confirmed by PCR analysis with specific primer for bar gene. Expression of the transgene in transformed zoysiagrass plants was demonstrated by Reverse transcriptase (RT)-PCR analysis. All the tested transgenic plants showed herbicide BastaR resistance at the field application rate of $0.1\%-0.3\%$.