• 제목/요약/키워드: Carbon Storage and Sequestration

검색결과 84건 처리시간 0.031초

[ $CO_2$ ] Sequestration on Various Structures of Natural Gas Hydrate Layer for Effective Recovery of $CH_4$ Gas

  • Park, Young-June;Choi, Suk-Jeong;Shin, Kyu-Chul;Seol, Ji-Woong;Lee, Hu-En
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.410-411
    • /
    • 2006
  • On the continental margins and in permafrost regions, natural gas, which has been expected to replace petroleum energy, exists In solid hydrate farm. World hydrate reserves Including natural gas are estimated at about twice as much as the energy contained In total fossil fuel reserves. Because of its vast quantities, the efficient recovery of natural gas from natural gas hydrate becomes the most important factor on evaluating the economic feasibility in the sense of commercialization. It has been noted that carbon dioxide, one of the well-known green house gases, possibly can be stored in the ocean floor as a carbon dioxide hydrate. If the natural gas hydrate could be converted into carbon dioxide hydrate, natural gas hydrate deposits would serve as energy sources as well as carbon dioxide storage sites in the deep ocean sediments. In this study, we first attempted to examine the real swapping phenomenon occurring between guest molecules and various structures of gas hydrate through spectroscopic identification such as NMR spectroscopy.

  • PDF

Characteristics of accumulated soil carbon and soil respiration in temperate deciduous forest and alpine pastureland

  • Jeong, Seok-Hee;Eom, Ji-Young;Park, Ju-Yeon;Lee, Jae-Ho;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • 제42권1호
    • /
    • pp.20-29
    • /
    • 2018
  • Background: For various reasons such as agricultural and economical purposes, land-use changes are rapidly increasing not only in Korea but also in the world, leading to shifts in the characteristics of local carbon cycle. Therefore, in order to understand the large-scale ecosystem carbon cycle, it is necessary first to understand vegetation on this local scale. As a result, it is essential to comprehend change of the carbon balance attributed by the land-use changes. In this study, we attempt to understand accumulated soil carbon (ASC) and soil respiration (Rs) related to carbon cycle in two ecosystems, artificially turned forest into pastureland from forest and a native deciduous temperate forest, resulted from different land-use in the same area. Results: Rs were shown typical seasonal changes in the alpine pastureland (AP) and temperate deciduous forest (TDF). The annual average Rs was $160.5mg\;CO_2\;m^{-2}h^{-1}$ in the AP, but it was $405.1mg\;CO_2\;m^{-2}h^{-1}$ in the TDF, indicating that the Rs in the AP was lower about 54% than that in the TDF. Also, ASC in the AP was $124.49Mg\;C\;ha^{-1}$ from litter layer to 30-cm soil depth. The ASC was about $88.9Mg\;C\;ha^{-1}$, and it was 71.5% of that of the AP. The temperature factors in the AP was high about $4^{\circ}C$ on average compared to the TDF. In AP, it was observed high amount of sunlight entering near the soil surface which is related to high soil temperature is due to low canopy structure. This tendency is due to the smaller emission of organic carbon that is accumulated in the soil, which means a higher ASC in the AP compared to the TDF. Conclusions: The artificial transformation of natural ecosystems into different ecosystems is proceeding widely in the world as well as Korea. The change in land-use type is caused to make the different characteristics of carbon cycle and storage in same region. For evaluating and predicting the carbon cycle in the vegetation modified by the human activity, it is necessary to understand the carbon cycle and storage characteristics of natural ecosystems and converted ecosystems. In this study, we studied the characteristics of ecosystem carbon cycle using different forms in the same region. The land-use changes from a TDF to AP leads to changes in dominant vegetation. Removal of canopy increased light and temperature conditions and slightly decreased SMC during the growing season. Also, land-use change led to an increase of ASC and decrease of Rs in AP. In terms of ecosystem carbon sequestration, AP showed a greater amount of carbon stored in the soil due to sustained supply of above-ground liters and lower degradation rate (soil respiration) than TDF in the high mountains. This shows that TDF and AP do not have much difference in terms of storage and circulation of carbon because the amount of carbon in the forest biomass is stored in the soil in the AP.

위성영상 시공간 융합과 CASA 모형을 활용한 산지 개발사업의 식생 순일차생산량에 대한 영향 평가 (Impact Assessment of Forest Development on Net Primary Production using Satellite Image Spatial-temporal Fusion and CASA-Model)

  • 김예화;주경영;성선용;이동근
    • 한국환경복원기술학회지
    • /
    • 제20권4호
    • /
    • pp.29-42
    • /
    • 2017
  • As the "Guidelines for GHG Environmental Assessment" was revised, it pointed out that the developers should evaluate GHG sequestration and storage of the developing site. However, the current guidelines only taking into account the quantitative reduction lost within the development site, and did not consider the qualitative decrease in the carbon sequestration capacity of forest edge produced by developments. In order to assess the quantitative and qualitative effects of vegetation carbon uptake, the CASA-NPP model and satellite image spatial-temporal fusion were used to estimate the annual net primary production in 2005 and 2015. The development projects between 2006 and 2014 were examined for evaluate quantitative changes in development site and qualitative changes in surroundings by development types. The RMSE value of the satellite image fusion results is less than 0.1 and approaches 0, and the correlation coefficient is more than 0.6, which shows relatively high prediction accuracy. The NPP estimation results range from 0 to $1335.53g\;C/m^2$ year before development and from 0 to $1333.77g\;C/m^2$ year after development. As a result of analyzing NPP reduction amount within the development area by type of forest development, the difference is not significant by type of development but it shows the lowest change in the sports facilities development. It was also found that the vegetation was most affected by the edge vegetation of industrial development. This suggests that the industrial development causes additional development in the surrounding area and indirectly influences the carbon sequestration function of edge vegetaion due to the increase of the edge and influx of disturbed species. The NPP calculation method and results presented in this study can be applied to quantitative and qualitative impact assessment of before and after development, and it can be applied to policies related to greenhouse gas in environmental impact assessment.

우리나라 논 토양의 토양유기탄소 변동 특성 (Soil Organic Carbon Dynamics in Korean Paddy Soils)

  • 정원교;김선관
    • 한국토양비료학회지
    • /
    • 제40권1호
    • /
    • pp.36-42
    • /
    • 2007
  • 지구온난화, 기후변화 및 온실가스 배출 및 저감기술에 관한 많은 연구가 수행되고 있으나, 토양 내 유기탄소의 축적을 통한 온실가스 배출억제에 대한 연구는 매우 미진하며, 특별히 우리나라 농경지의 주요 이용형태인 논토양에 대해서는 유기탄소의 축적량 산정을 포함한 변동 등에 대한 연구가 매우 미흡하다. 본 연구에서는 도서를 제외한 우리나라 전국적인 논 토양 유기탄소의 연차별 모니터링을 통하여 토양에서 유기탄소의 연차간 변동을 평가하였으며 토양의 생성학적, 물리적 특성에 따라 토양유기탄소의 변화에 대한 해석을 시도하였다. 연구결과, 토양 생성분류학적으로 우리나라의 주된 논토양인 Inceptisol 에서 토양유기탄소량이 1999년에 비하여 2003년에 증가하는 경향이었던 것으로 나타났으며, 논의 이용형태별로는 염해답이나 미숙답에서 보다 보통답, 사질답, 배수불량답에서 토양유기탄소가 증가하는 것으로 나타났다. 표토의 토성별로 양토에서 보다 미사 식양토 및 미사양토에서 유기탄소의 증가가 높게 나타났다. 지형적으로는 곡간지에서 보다 평탄지에서 토양유기탄소의 증가율이 높게 나타났다. 결론적으로, 본 연구의 결과를 통하여, 1999년 이후 논토양에서 토양유기탄소의 양이 증가하는 경향을 나타내고 있으며 ($+0.11g\;kg^{-1}yr^{-1}$) 이는 대기중의 이산화탄소를, 논 토양의 유기탄소 축적기능을 통해, 토양 중에 저장함으로써 논토양이 온실가스 흡수원으로서의 역할을 하는 것으로 해석할 수 있다.

동일비료장기연용 논에서 토양유기탄소의 변동 (Long-term Impact of Single Rice Cropping System on SOC Dynamics)

  • 정원교;김선관;연병열;노재승
    • 한국토양비료학회지
    • /
    • 제40권4호
    • /
    • pp.292-297
    • /
    • 2007
  • 이산화탄소 등 온실가스의 농도 증가로 인한 지구온난화 에 따른 기후의 변화 및 환경적 영향이 증가하고 있으며 토양내 유기탄소의 축적을 통해 대기 중 이산화탄소등 온실 가스의 감축을 효과적으로 제어할 수 있는 방법들이 연구되어 보고되고 있으나, 우리나라의 논의 경우에는 토양유기탄소의 토양 축적에 관한 연구가 매우 적게 보고되고 있다. 따라서 우리나라 주요 경지 이용형태인 논에 대해서도 토양중 탄소를 축적할 수 있는 토양관리 방법의 연구가 매우 필요하게 되었다. 본 연구는 농촌진흥청 농업과학기술원 동일비료 및 개량제 처리 장기시험 포장에서 퇴비, NPK 비료, 석회, 및 규산등의 처리구별 토양유기탄소의 동태를 분석하였다. 연구결과 인산, 칼리 및 석회의 시용은 장기간 시용한 이후에 처리한 구에서 미처리구에서 보다 토양유기탄소의 함량이 높게 나타났다. 한편 퇴비 시용구의 경우 퇴비 미시용구에서 보다 퇴비 시용구에서 토양유기탄소의 함량이 지속적으로 증가하는 것으로 나타났으며 시간이 지날수록 유기탄소축적비율도 증가하는 것으로 나타났다. 결론적으로 단일 논 작부체계하에서 장기간 지속적인 퇴비의 시용 결과 토양 중 유기탄소의 효과적인 축적이 이루어 졌다. 따라서 우리나라 논에서 중 유기탄소의 축적을 위하여 퇴비의 지속적인 시용을 제안하고자 한다.

서울시 습지지역의 탄소저장 및 경제적 가치 평가에 대한 연구 (The Evaluation of Carbon Storage and Economic Value Assessment of Wetlands in the City of Seoul)

  • 최지영;오종민;이상돈
    • Ecology and Resilient Infrastructure
    • /
    • 제8권2호
    • /
    • pp.120-132
    • /
    • 2021
  • 서울시 생태경관보전지역은 자연환경보전법과 자연환경보전조례에 근거하고 있다. 2018년 제13차 람사르협약 당사국총회에서 '습지 생태계서비스 간편평가 도구'가 채택되었으며, 람사르습지 도시 인증제 항목에 습지 생태계서비스 평가 항목이 포함됨에 따라 이를 평가할 자료가 필요하다. 본 연구는 서울시 생태경관 보전지역 중 생태적 보전 가치가 높은 습지 5곳을 선정하여 InVEST 모델로 탄소저장량과 경제성 평가를 하고자 하였다. 연구결과는 탄천습지 3,674.62 Mg, 한강 밤섬 1,511.57 Mg, 고덕동 습지 5,007.21 Mg, 암사동 습지 7,108.47 Mg, 여의도 샛강 습지 290.27Mg으로 도출되었다. 이 중 탄천습지는 2013년의 탄천습지의 탄소저장량은 4,804.99 Mg로 탄소저장량 1,130.37 Mg 감소하여 실효탄소요금 평균값인 $16.06(US)를 적용하였을 경우, $15,910.58(US) 손실된 것으로 환산되었고, 기후변화에 따른 생산성과 생태계에 미치는 영향을 포함한 탄소의 사회적 비용 평균값인 $204(US)를 적용하였을 경우, $202,101.97(US) 손실로 도출되었다. 본 연구는 서울시 주요 습지지역을 선정하여 도심 속 습지가 주고 있는 자연자원의 가치를 평가하고자 하였다. 서울시 주요 습지의 생태적 가치 평가를 통하여 생태경관보전지역 보호 및 관리 방안의 기초자료로 활용이 가능할 것으로 판단된다. 또한, 습지 가치 평가에 대한 중요 의제로 간주되고 있음에 따라 향후 람사르 습지도시 인증제 항목에서 생태계서비스 평가 방안 제시가 가능하다고 사료된다. 람사르 습지를 인식하여 중요한 습지의 발굴 유도에 활용이 가능하며, 도심지역 내 습지 보전의 중요성에 대한 인식 증진과 람사르 습지의 국제적 교류에 도움을 줄 수 있다고 판단된다.

Assessment of Carbon Stock in Chronosequence Rehabilitated Tropical Forest Stands in Malaysia

  • Kueh, Roland Jui Heng;Majid, Nik Muhamad;Ahmed, Osumanu Haruna;Gandaseca, Seca
    • Journal of Forest and Environmental Science
    • /
    • 제32권3호
    • /
    • pp.302-310
    • /
    • 2016
  • The loss and degradation in tropical forest region are some of the current global concern. Hence, these issues elevated the role of rehabilitated forests in providing ecological products and services. The information on the carbon stock is important in relation to global carbon and biomass use, but lacking from the tropical region. This paper reports the assessment of tree and soil carbon stock in a chronosequence rehabilitated tropical forest stands in Malaysia. The study site was at the UPM-Mitsubishi Forest Rehabilitation Project, UPMKB. $20{\times}20m$ plot was established each and assessed in 2009 at 1-, 10- and 19-year-old sites while an adjacent ${\pm}23-year-old$ natural regenerating secondary forest plot was established for comparison. The overall total carbon stock was in the order of 19-year-old>${\pm}23-year-old$>10-year-old>1-year-old. When forest carbon stock is low, the soil component plays an important role in the carbon storage. The forest carbon recovery is crucial to increase soil carbon stock. The variations in the carbon stock showed the different stages of the forest recovery. Species survived after 19-years of planting are potential species for carbon sequestration activities in rehabilitated forest. Human intervention in rehabilitating degraded forest areas through tree planting initiatives is crucial towards recovering the forest ecological role especially in forest carbon stock capacity.

Effect of the Application of Carbonized Biomass from Crop Residues on Soil Organic Carbon Retention

  • Lee, Sun-Il;Park, Woo-Kyun;Kim, Gun-Yeob;Shin, Joung-Du
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.486-490
    • /
    • 2014
  • This study was conducted to investigate the effect of carbonized biomass from crop residues on soil carbon storage during soybean cultivation. The carbonized biomass was made by field scale mobile pyrolyzer. The treatments consisted of control without input and three levels of carbonized biomass inputs as $59.5kg10a^{-1}$, C-1 ; $119kg10a^{-1}$, C-2 ; $238kg10a^{-1}$, C-3. Soil samples were collected during the 113 days of experimental periods, and analyzed soil pH and moisture contents. Soil carbon contents and soybean yield were measured at harvesting period. For the experimental results, soil pH ranged from 6.8 to 7.5, and then increased with increasing carbonized material input. Soil moisture contents were slightly higher by 0.1~1.5% than the control, but consistent pattern was not observed among the treatments. Soil carbon and organic carbon contents in the treatments increased at 24 and 15% relative to the control at 15 days after sowing, respectively. Loss rate of SOC (soil organic carbon) relative to its initial content was 7.2% in control followed by C-1, 6.8%> C-2, 3.5%>C-3, 1.1% during the experimental periods. The SOC change rate decreased with increasing carbonized biomass rate. It was appeared that soybean yields were $476.9kg10a^{-1}$ in the control, and ranged from 453.6 to $527.3kg10a^{-1}$ in the treatments. However, significant difference was not found among the treatments. It might be considered that the experimental results will be applied to soil carbon sequestration for future study.

CCS와 연계한 석유회수증진 기술 동향 및 현장사례 분석 (A Review of Enhanced Oil Recovery Technology with CCS and Field Cases)

  • 박혜리;장호창
    • 한국가스학회지
    • /
    • 제27권3호
    • /
    • pp.59-71
    • /
    • 2023
  • 온실가스 감축과 탄소 중립의 실현을 위해서 탄소의 포집, 저장(carbon capture, and storage, CCS) 기술은 매우 중요하다. CCS는 CO2 저장을 중점적으로 함으로써, 포획된 CO2를 지하 저류층 내부에 영구적으로 보관하는 역할을 한다. CO2--EOR(enhanced oil recovery)은 CCS의 한 형태로, 오일 회수 촉진을 위해 CO2를 지하 내부로 주입시켜 잔류 오일 회수에 도움을 줄 뿐만 아니라 CO2가 지하에 저장되어 탄소 중립에도 기여하는 기술이다. 이 CO2-EOR은 혼화공법과 비혼화공법으로 분류하며 혼화공법의 대표적인 방식인 CO2-WAG(water alternating gas)는 물과 CO2를 저류층 내부에 교대로 주입하여 오일을 생산하고 CO2를 저장하는 공법이다. WAG 방식은 주입 유체의 돌파를 조절할 수 있어 오일 회수에 유리한 특징을 보이며, 흡입과 배출 과정 중에 상대투과도의 이력현상을 유도해 CO2의 잔류 격리량을 확대할 수 있다. 본 연구에서는 CO2-EOR 과정에서의 석유회수증진 효과와 CO2가 지중에 저장되는 메커니즘을 설명하였으며, CCS와 연계한 CO2-EOR 적용 사례를 소개하였다.

Influence of carbonized crop residue on soil carbon storage in red pepper field

  • Lee, Jae-Ho;Eom, Ji-Young;Jeong, Seok-hee;Hong, Seung-Bum;Park, Eun-Jin;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • 제41권12호
    • /
    • pp.336-344
    • /
    • 2017
  • Background: Because of climate change, interest in the development of carbon pools has increased. In agricultural ecosystems, which can be more intensively managed than forests, measures to control carbon dioxide ($CO_2$) emission and absorption levels can be applied relatively easily. However, crop residues may be released into the atmosphere by decomposition or combustion. If we can develop scientific management techniques that enable these residues to be stocked on farmland, then it would be possible to convert farmlands from carbon emission sources to carbon pools. We analyzed and investigated soil respiration (Rs) rate characteristics according to input of carbonized residue of red peppers (Capsicum annuum L.), a widely grown crop in Korea, as a technique for increasing farmland carbon stock. Results: Rs rate in the carbonized biomass (CB) section was $226.7mg\;CO_2\;m^{-2}h^{-1}$, which was 18.1% lower than the $276.9mg\;CO_2\;m^{-2}h^{-1}$ from the red pepper residue biomass (RB) section. The Rs rate of the control was $184.1mg\;CO_2\;m^{-2}h^{-1}$. In the following year, Rs in the CB section was $204.0mg\;CO_2\;m{-2}h^{-1}$, which was 38.2% lower than the $330.1mg\;CO_2\;m^{-2}h^{-1}$ from the RB section; the control emitted $198.6mg\;CO_2\;m^{-2}h^{-1}$. Correlation between Rs and soil temperature ((Ts) at a depth of 5 cm) was $R^2=0.51$ in the RB section, which was higher than the other experimental sections. A comparison of annual decomposition rates between RB and CB showed a large difference, 41.4 and 9.7%, respectively. The results showed that carbonization of red pepper residues reduced the rates of decomposition and Rs. Conclusions: The present study confirmed that the Rs rate can be reduced by carbonization of residue biomass and putting it in the soil and that the Rs rate and Ts (5 cm) were positively correlated. Based on the results, it was determined that approximately $1.2t\;C\;ha^{-1}$ were sequestered in the soil in the first year and $3.0t\;C\;ha^{-1}$ were stored the following year. Therefore, approximately $1.5t\;C\;ha^{-1}year^{-1}$ are expected to be stocked in the soil, making it possible to develop farmlands into carbon pools.