• Title/Summary/Keyword: Carbon Nanotube, CNT

Search Result 765, Processing Time 0.043 seconds

Flexible Antenna Radiator Fabricated Using the CNT/PVDF Composite Film (CNT/PVDF 복합막을 이용한 유연소자용 안테나 방사체)

  • Kim, YongJin;Lim, Young Taek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.196-200
    • /
    • 2015
  • In this paper, we fabricated flexible antenna radiator using the CNT/PVDF (carbon nanotube / polyvinylidene fluoride) composite film. We used polymer film as a matrix material for the flexible devices, and introduced CNTs for adding conductivity into the film resulting in obtaining performances of the antenna radiator. Spray coating method was used to form the CNT/PVDF composite radiator, and pattern formation of the radiator was done by shadow mask during the spray coating process. We investigated the electrical properties of the CNT/PVDF composite films with the CNT concentration, and also estimated the radiator performance. Finally we discuss the feasibility of the CNT/PVDF composite radiator for the flexible antenna.

Fabrication of a CNT Filter for a Microdialysis Chip

  • An, Yun-Ho;Song, Si-Mon
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.279-284
    • /
    • 2006
  • This paper describes the fabrication methods of a carbon nanotube (CNT) filter and a microdialysis chip. A CNT filter can help perform dialysis on a microfluidic chip. In this study, a membrane type of a CNT filter is fabricated and located in a microfluidic chip. The filter plays a role of a dialysis membrane in a microfluidic chip. In the fabrication process of a CNT filter, individual CNTs are entangled each other by amide bonding that is catalyzed by 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The chemically treated CNTs are shaped to form a CNT filter using a PDMS film-mold and vacuum filtering. Then, the CNT filter is sandwiched between PDMS substrates, and they are bonded together using a thin layer of PDMS prepolymer as adhesive. The PDMS substrates are fabricated to have a microchannel by standard photo-lithography technique.

Temperature-dependent Resistance Change of Conductive CNT Thin-film (전도성 CNT 박막의 온도에 따른 저항 변화도 연구)

  • Kwon, Min-Kyu;Hong, Yong-Taek
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.151-157
    • /
    • 2009
  • This paper reports the resistance change of conductive carbon nanotube (CNT) thin-films according to the temperature variation. Resistance of conductive CNT thin-films intrinsically has good thermal sensitivity, but shows environmental dependency. In order to reduce environmental effects, we spin-coated polydimethylsiloxane (PDMS) on the conductive CNT thin-films. We observed that conductive CNT thin-films with a PDMS encapsulation layer showed little environmental dependency, but more linear and stable temperature dependencies. If proper encapsulation is provided, conductive CNT thin-films can be used for temperature sensor applications.

Parametric Characterization of Zinc Oxide Nanostructures Forming Three-Dimensional Hybrid Nanoarchitectures on Carbon Nanotube Constructs (산화아연 나노구조의 탄소나노튜브와의 혼성구조 형성 특성 연구)

  • Ok, Jong G.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2015
  • We study the structural and functional characteristics of zinc oxide (ZnO) nanostructures that are grown on carbon nanotube (CNT) constructs via step-wise chemical vapor deposition (CVD). First, we optimize the CVD process to directly grow ZnO nanostructures on CNTs by controlling the growth temperature below $600^{\circ}C$, where CNTs can be sustained in a ZnO-growing oxidative atmosphere. We then investigate how the morphology and areal density of ZnO nanostructures evolve depending on process parameters, such as pressure, temperature, and gas feeding composition, while focusing on the effect of underlying CNT topology on ZnO nucleation and growth. Because various types of ZnO nanostructures, including nanowires, nanorods, nanoplates, and polycrystalline nanocrystals, can be conformally formed on highly conductive CNT platforms, this electrically addressable three-dimensional hybrid nanoarchitecture may better meet a wide range of nanoelectronic application-specific needs.

Laser Patterning of Vertically Grown Carbon Nanotubes (수직성장된 탄소나노튜브의 선택적 패터닝)

  • Chang, Won Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1171-1176
    • /
    • 2012
  • The selective patterning of a carbon nanotube (CNT) forest on a Si substrate has been performed using a femtosecond laser. The high shock wave generated by the femtosecond laser effectively removed the CNTs without damage to the Si substrate. This process has many advantages because it is performed without chemicals and can be easily applied to large-area patterning. The CNTs grown by plasma-enhanced chemical vapor deposition (PECVD) have a catalyst cap at the end of the nanotube owing to the tip-growth mode mechanism. For the application of an electron emission and biosensor probe, the catalyst cap is usually removed chemically, which damages the surface of the CNT wall. Precise control of the femtosecond laser power and focal position could solve this problem. Furthermore, selective CNT cutting using a femtosecond laser is also possible without any phase change in the CNTs, which is usually observed in the focused ion beam irradiation of CNTs.

Study on Performance Comparison in Carbon Nanotube Embedded Electrospun Membranes for Particulate Matter Removal (탄소나노튜브가 첨가된 전기방사 멤브레인의 미세입자 제거 성능 비교에 관한 연구)

  • Gu, Minkyung;kim, Dongwan;Han, Sangil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.56-60
    • /
    • 2018
  • There have been a lot of study to improve the performance of membrane filters as the removal of particulate matter has been of great interest due to the negative effects. Among the membrane fabrication techniques, the electrospinning technique is the most promising because it can produce uniform fibers ranging from nano to micrometer size. The electrospun membranes will greatly improve the filtration performance due to the high ratio of surface area to volume and the high porosity. In the present study, polystyrene (PS) and cellulose acetate (CA) polymers were used to produce the membranes with carbon nanotube (CNT), showing the filtration performances were improved with the optimal amounts of CNT.

Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube (불소화 일라이트 및 탄소나노튜브 강화 에폭시 복합재의 기계적 및 열적 특성)

  • Lee, Kyeong Min;Lee, Si-Eun;Kim, Min Il;Kim, Hyeong Gi;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.285-290
    • /
    • 2016
  • To improve properties of epoxy composites, surfaces of the illite and carbon nanotube (CNT) were treated by fluorine gas. The fluorinated illite and CNT were then characterized by X-ray photoelectron microscopy (XPS) and the mechanical and thermal properties of their composites were evaluated. The tensile and impact strengths and thermal stability of the composites increased upto about 59%, 18% and 124%, respectively compared to those of the neat epoxy. Improvements of mechanical and thermal properties in the composites were attributed that the fluorination of illite and carbon nanotube helps to enhance the dispersion in epoxy resin and interfacial interaction between them.

Thermal effects on nonlinear dynamic characteristics of polymer-CNT-fiber multiscale nanocomposite structures

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.403-415
    • /
    • 2018
  • In the present study, nonlinear dynamic response of polymer-CNT-fiber multiscale nanocomposite plate resting on elastic foundations in thermal environments using the finite element method is performed. In this regard, the governing equations are derived based on Inverse Hyperbolic Shear Deformation Theory and von $K{\acute{a}}rm{\acute{a}}n$ geometrical nonlinearity. Three type of distribution of temperature through the thickness of the plate namely, uniform linear and nonlinear are considered. The considered element is C1-continuous with 15 DOF at each node. The effective material properties of the multiscale composite are calculated using Halpin-Tsai equations and fiber micromechanics in hierarchy. The carbon nanotubes are assumed to be uniformly distributed and randomly oriented through the epoxy resin matrix. Five types of impulsive loads are considered, namely the step, sudden, triangular, half-sine and exponential pulses. After examining the validity of the present work, the effects of the weight percentage of SWCNTs and MWCNTs, nanotube aspect ratio, volume fraction of fibers, plate aspect, temperature, elastic foundation parameters, distribution of temperature and shape of impulsive load on nonlinear dynamic response of CNT reinforced multi-phase laminated composite plate are studied in details.

Gassensing characteristics of carbon nanotube gas sensor using a diaphragm structure (다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 가스감응특성)

  • Kim, Sung-Woon;Han, Chun-Jae;Cho, Woo-Sung;Ju, Byeong-Kwon;Cho, Hyun-Seob;Kim, Young-Cho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.203-206
    • /
    • 2006
  • The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_2$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.

  • PDF

Vacuum In-line Sealing Technology of the Screen-printed CNT-FEA

  • Kwon, Sang-Jik;Kim, Tae-Ho;Shon, Byeong-Kyoo;Cho, Euo-Sik;Lee, Jong-Duk;Uh, Hyung-Soo;Cho, Sung-Hee;Lee, Chun-Gyoo
    • Journal of Information Display
    • /
    • v.4 no.3
    • /
    • pp.6-11
    • /
    • 2003
  • We have fabricated a carbon nanotube field emission display (CNT-FED) panel with a 2-inch diagonal size by using a screen printing method and vacuum in-line sealing technology. The sealing temperature of the panel was around 390$^{\circ}C$ and the vacuum level was obtained with 1.4x$10^{-5}$torr at the sealing. When the field emission properties of a fabricated and sealed CNT-FED panel were characterized and compared with those of the unsealed panel which was located in a test chamber of vacuum level similar with the sealed panel. As a result, the sealed panel showed similar I-V characteristics with unsealed one and uniform light emission with very high brightness at a current density of 243 ${\mu}A/cm^2$, obtained at the electric field of 10 V/${\mu}m$.