DOI QR코드

DOI QR Code

Flexible Antenna Radiator Fabricated Using the CNT/PVDF Composite Film

CNT/PVDF 복합막을 이용한 유연소자용 안테나 방사체

  • Kim, YongJin (Department of Electrical Information, Inha Technical College) ;
  • Lim, Young Taek (School of Electrical Engineering, Inha University) ;
  • Lee, Sunwoo (Department of Electrical Information, Inha Technical College)
  • 김용진 (인하공업전문대학 전기정보과) ;
  • 임영택 (인하대학교 전기공학과) ;
  • 이선우 (인하공업전문대학 전기정보과)
  • Received : 2015.01.08
  • Accepted : 2015.01.13
  • Published : 2015.03.01

Abstract

In this paper, we fabricated flexible antenna radiator using the CNT/PVDF (carbon nanotube / polyvinylidene fluoride) composite film. We used polymer film as a matrix material for the flexible devices, and introduced CNTs for adding conductivity into the film resulting in obtaining performances of the antenna radiator. Spray coating method was used to form the CNT/PVDF composite radiator, and pattern formation of the radiator was done by shadow mask during the spray coating process. We investigated the electrical properties of the CNT/PVDF composite films with the CNT concentration, and also estimated the radiator performance. Finally we discuss the feasibility of the CNT/PVDF composite radiator for the flexible antenna.

Keywords

References

  1. M. R. Ahsan, M. T. Islam, and M. H. Ullah, Microwave and Optical Technology Letters, 56, 1540 (2014). https://doi.org/10.1002/mop.28375
  2. U. Deepak, T. K. Roshna, C. M. Nijas, and P. Mohanan, Electronics Letters, 50, 62 (2014). https://doi.org/10.1049/el.2013.3544
  3. S. W. Lee and Y. J. Sung, Microwave and Optical Technology Letters, 56, 2888 (2014). https://doi.org/10.1002/mop.28728
  4. B. Khalichi, S. Nikmehr, and A. Pourziad, Progress in Electromagnetics Research, 142, 189 (2013). https://doi.org/10.2528/PIER13070204
  5. Y. K. Park and Y. Sung, IEEE Transactions on Antennas and Propagation, 60, 3003 (2012). https://doi.org/10.1109/TAP.2012.2194672
  6. B. Mandal and S. K. Parui, Microwave and Optical Technology Letters, 57, 45 (2015). https://doi.org/10.1002/mop.28781
  7. S. Yan, P. J. Soh, and G. Vandenbosch, IEEE Transactions on Antennas and Propagation, 62, 6487 (2014). https://doi.org/10.1109/TAP.2014.2359194
  8. Y. Sun, S. W. Cheung, and T. I. Yuk, IET Microwaves, Antennas & Propagation, 8, 1363 (2014). https://doi.org/10.1049/iet-map.2013.0658
  9. K. Hettak, A. Petosa, and R. James, IEEE Antennas and Propagation Society International Symposium (APSURSI), 328 (2014).
  10. Z. Zhao, W. Zheng, W. Yu, and B. Long, Carbon, 47, 2112 (2009). https://doi.org/10.1016/j.carbon.2009.02.027
  11. Z. M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q. Q. Lei, Adv. Mater., 19, 852 (2007). https://doi.org/10.1002/adma.200600703
  12. A. J. Lovinger, Science, 220, 1115 (1983). https://doi.org/10.1126/science.220.4602.1115
  13. G. T. Davis, J. E. McKinney, M. G. Broadhurst, and S. C. Roth, J. Appl. Phys., 49, 4998 (1978). https://doi.org/10.1063/1.324446
  14. J. H. Han and Y. C. Choi, Synthetic Metals, 185, 45 (2013).