• Title/Summary/Keyword: Carbon Cycle

Search Result 1,018, Processing Time 0.04 seconds

Aerobic Capacity and Ventilatory Response During Incremental Exercise in Elite High School Cyclist (점진부하 운동에서 중고교 엘리트 사이클 선수들의 유산소능력과 폐환기 반응)

  • Lee, Dae-Taek;Bae, Yoon-Jung
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.437-443
    • /
    • 2010
  • This study was designed to examine the aerobic capacity and ventilatory response during an incremental exercise in elite high school cyclists. Twelve boys ($17{\pm}1\;yr$, $175{\pm}5\;cm$, $70{\pm}9\;kg$) participated in anthropometric measurements, incremental exercise testing, and pulmonary function tests. During incremental exercise testing using a cycle ergometer, their maximal oxygen uptake ($VO_2max$), maximal power output, ventilation, ventilatory equivalents for oxygen ($V_E/VO_2$) and carbon dioxide ($V_E/VCO_2$), respiratory rate, and tidal volume were measured. Time variables such as inspiratory time (Ti), expiratory time (Te), breathing time (Tb), and inspiratory duty cycle (Ti/Tb), as well as inspiratory flow rate ($V_T$/Ti) were assessed. Pulmonary function of vital capacity (FVC), forced expiratory volume in one second ($FEV_1$), $FEV_1$/FVC, and peak expiratory flow were evaluated. Their $VO_2max$, maximal heart rate, and Wmax were $57.5{\pm}3.9\;ml{\cdot}kg^{-1}{\cdot}min^{-1}$, $194.1{\pm}8.6\;beat{\cdot}min^{-1}$, and 452 W, respectively. $VO_2max$ was not related to any anthropometric parameters. Most ventilatory variables progressively increased with exercise intensity. As intensity increased, Ti, Tb, Tb decreased while Ti/Tb was maintained. Below an intensity of 250 W, height, weight, body mass index, and body surface were highly correlated with $V_T$/Ti and Ti/Tb (p<0.05). Collectively, $VO_2max$ appeared to be lower than adult cyclists, suggesting a different pattern of ventilatory control as age advances. Morphological characteristics were not related to $VO_2max$ in the population. Time variables of ventilatory response seemed to be related only at an exercise intensity level of less than 250 W. $V_T$/Ti may be related to exercise endurance capacity, but Ti/Tb was similar to adult cyclists.

Evaluation of $^{14}C$ Behavior Characteristic in Reactor Coolant from Korean PWR NPP's (국내 경수로형 원자로 냉각재 중의 $^{14}C$ 거동 특성 평가)

  • Kang, Duk-Won;Yang, Yang-Hee;Park, Kyong-Rok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • This study has been focused on determining the chemical composition of $^{14}C$ - in terms of both organic and inorganic $^{14}C$ contents - in reactor coolant from 3 different PWR's reactor type. The purpose was to evaluate the characteristic of $^{14}C$ that can serve as a basis for reliable estimation of the environmental release at domestic PWR sites. $^{14}C$ is the most important nuclide in the inventory, since it contributes one of the main dose contributors in future release scenarios. The reason for this is its high mobility in the environment, biological availability and long half-life(5730yr). More recent studies - where a more detailed investigation of organic $^{14}C$ species believed to be formed in the coolant under reducing conditions have been made - show that the organic compounds not only are limited to hydrocarbons and CO. Possible organic compounds formed including formaldehyde, formic acid and acetic acid, etc. Under oxidizing conditions shows the oxidized carbon forms, possibly mainly carbon dioxide and bicarbonate forms. Measurements of organic and inorganic $^{14}C$ in various water systems were also performed. The $^{14}C$ inventory in the reactor water was found to be 3.1 GBq/kg in PWR of which less than 10% was in inorganic form. Generally, the $^{14}C$ activity in the water was divided equally between the gas- and water- phase. Even though organic $^{14}C$ compound shows that dominant species during the reactor operation, But during the releasing of $^{14}C$ from the plant stack, chemical forms of $^{14}C$ shows the different composition due to the operation conditions such as temperature, pH, volume control tank venting and shut down chemistry.

  • PDF

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.

Statistical Optimization of Production Medium for Enhanced Production of Itaconic Acid Biosynthesized by Fungal Cells of Aspergillus terreus (Aspergillus terreus에 의해 생합성되는 이타콘산의 생산성 증가를 위한 통계적 생산배지 최적화)

  • Jang, Yong-Man;Shin, Woo-Shik;Lee, Do-Hoon;Kim, Sang-Yong;Park, Chul-Hwan;Jeong, Yong-Seob;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.30-40
    • /
    • 2009
  • Statistical optimization of the production medium was carried out in order to find an optimal medium composition in itaconic acid fermentation process. Itaconic acid utilized in the manufacture of various synthetic resins is a dicarboxylic acid biosynthesized by fungal cells of Aspergillus terreus in a branch of the TCA cycle via decarboxylation of cis-aconitate. Through OFAT (one factor at a time) experiments, six components (glucose, fructose, sucrose, soluble starch, soybean meal and cottonseed flour) were found to have significant effects on itaconic production among various carbon- and nitrogen-sources. Hence, using these six factors, interactive effects were investigated via fractional factorial design, showing that the initial concentrations of sucrose and cottonseed flour should be high for enhanced production of itaconic acid. Furthermore, through full factorial design (FFD) experiments, negative effects of $KH_2PO_4$ and $MgSO_4$ on itaconic acid biosynthesis were demonstrated, when excess amounts of the each component were initially added. Based on the FFD analysis, further statistical experiments were conducted along the steepest ascent path, followed by response surface method (RSM) in order to obtain optimal concentrations of the constituent nutrients. As a result, optimized concentrations of sucrose and cottonseed flour were found to be 90.4g/L and 53.8g/L respectively, with the corresponding production level of itaconic acid to be 4.36 g/L (about 7 fold higher productivity as compared to the previous production medium). From these experimental results, it was assumed that optimum ratio of the constituent carbon (sucrose) and nitrogen (cottonseed flour) sources was one of the most important factors for the enhanced production of itaconic acid.

A Study on Comparative Analysis of Socio-economic Impact Assessment Methods on Climate Change and Necessity of Application for Water Management (기후변화 대응을 위한 발전소 온배수 활용 양식업 경제성 분석)

  • Lee, Sangsin;Kim, Shang Moon;Um, Gi Jeung
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • In order to resolve the problem of change in global climate which is worsening as days go by and to preemptively cope with strengthened restriction on carbon emission, the government enacted 'Framework Act on Low Carbon Green Growth' in 2010 and selected green technology and green industry as new national growth engines. For this reason, the necessity to use the un-utilized waste heat across the whole industrial system has become an issue, and studies on and applications of recycling in the agricultural and fishery fields such as cultivation of tropical crops and flatfishes by utilizing the waste heat and thermal effluent generated by large industrial complexes including power plants are being actively carried out. In this study, we looked into the domestic and overseas examples of having utilized waste heat abandoned in the form of power plant thermal effluent, and carried out economic efficiency evaluation of sturgeon aquaculture utilizing thermal effluent of Yeongwol LNG Combined Cycle Power Plant in Gangwon-do. In this analysis, we analyzed the economic efficiency of a model business plan divided into three steps, starting from a small scale in order to minimize the investment risk and financial burden, which is then gradually expanded. The business operation period was assumed to be 10 years (2012~2021), and the NVP (Net Present Value) and economic efficiency (B/C) for the operation period (10 years) were estimated for different loan size by dividing the size of external loan by stage into 80% and 40% based on the basic statistics secured through a site survey. Through the result of analysis, we can see that reducing the size of the external loan is an important factor in securing greater economic efficiency as, while the B/C is 1.79 in the case the external loan is 80% of the total investment, it is presumed to be improved to 1.81 when the loan is 40%. As the findings of this study showed that the economic efficiency of sturgeon aquaculture utilizing thermal effluent of power plant can be secured, it is presumed that regional development project items with high added value can be derived though this, and, in addition, this study will greatly contribute to reinforcement of the capability of local governments to cope with climate change.

  • PDF

Comparison of Atmospheric Carbon Dioxide Concentration Trend and Accuracy from GOSAT and AIRS data over the Korean Peninsula (한반도 지역에서의 이산화탄소 변화 경향과 AIRS, GOSAT 위성 자료의 정확도 비교)

  • Lee, Sanghee;Kim, Jhoon;Cho, Hi-Ku;Goo, Tae-Young;Ou, Mi-Lim;Lee, Jong-Ho;Yokota, Tatsuya
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2015
  • With the global scale impact of atmospheric $CO_2$ in global warming and climate system, it is necessary to monitor the $CO_2$ concentration continuously on a global scale, where satellite remote sensing has played a significant role recently. In this study, global monthly $CO_2$ concentrations obtained by satellite remote sensing were compared with ground-based measurements at Anmyeon-do and Gosan Korean Global Atmosphere Watch Center. Atmospheric $CO_2$ concentration has increased from 371.87 ppm in January 1999 to 405.50 ppm in December 2013 at Anmyeon-do station (KMA, 2013). Comparison of the continuous measurements by flask air sampling at Anmyeon-do shows the same trend and seasonal variations with those of global monthly mean dataset. Nevertheless, the trends of $CO_2$ over Northeast Asia showed the higher than those of global and the trends also changes with different slope. $CO_2$ products derived from Greenhouse Gases Observing Satellite (GOSAT) and Atmospheric Infrared Sounder (AIRS) were compared with ground-based measurement at Anmyeon-do. The monthly mean values of GOSAT and AIRS data are systemically lower than those obtained at Anmyeon-do, however, the seasonal cycle of satellite products present the similar trend with values of global and Anmyeon-do. The accuracy of $CO_2$ products from GOSAT and AIRS were evaluated statistically for two years from January 2011 to December 2012. GOSAT showed good correlation with the correlation coefficient, RMSD and bias of 0.947, 5.610 and -5.280 to ground-based measurements respectively, while AIRS showed reasonable comparison with 0.737, 8.574 and -7.316 at Anmyeon-do station, respectively.

Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith Using Response Surface Methodology (반응표면분석법을 이용한 루테늄 알루미나 메탈모노리스 코팅촉매의 암모니아 분해 최적화)

  • Choi, Jae Hyung;Lee, Sung-Chan;Lee, Junhyeok;Kim, Gyeong-Min;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.218-226
    • /
    • 2022
  • As a result of the recent social transformation towards a hydrogen economy and carbon-neutrality, the demands for hydrogen energy have been increasing rapidly worldwide. As such, eco-friendly hydrogen production technologies that do not produce carbon dioxide (CO2) emissions are being focused on. Among them, ammonia (NH3) is an economical hydrogen carrier that can easily produce hydrogen (H2). In this study, Ru/Al2O3 catalyst coated onmetallic monolith for hydrogen production from ammonia was prepared by a dip-coating method using a catalyst slurry mixture composed of Ru/Al2O3 catalyst, inorganic binder (alumina sol) and organic binder (methyl cellulose). At the optimized 1:1:0.1 weight ratio of catalyst/inorganic binder/organic binder, the amount of catalyst coated on the metallic monolith after one cycle coating was about 61.6 g L-1. The uniform thickness (about 42 ㎛) and crystal structure of the catalyst coated on the metallic monolith surface were confirmed through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Also, a numerical optimization regression equation for NH3 conversion according to the independent variables of reaction temperature (400-600 ℃) and gas hourly space velocity (1,000-5,000 h-1) was calculated by response surface methodology (RSM). This model indicated a determination coefficient (R2) of 0.991 and had statistically significant predictors. This regression model could contribute to the commercial process design of hydrogen production by ammonia decomposition.

Evaluation of CH4 Flux for Continuous Observation from Intertidal Flat Sediments in the Eoeun-ri, Taean-gun on the Mid-western Coast of Korea (서해안 태안 어은리 갯벌의 연속관측 메탄(CH4) 플럭스 특성 평가)

  • Lee, Jun-Ho;Rho, Kyoung Chan;Woo, Han Jun;Kang, Jeongwon;Jeong, Kap-Sik;Jang, Seok
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.147-160
    • /
    • 2015
  • In 2014, on 31 August and 1 September, the emissions of $CH_4$, $CO_2$, and $O_2$ gases were measured six times using the closed chamber method from exposed tidal flat sediments in the same position relative to the low point of the tidal cycle in the Eoeun-ri, Taean-gun, on the Mid-western Coast of Korea. The concentrations of $CH_4$ in the air sample collected in the chamber were measured using gas chromatography with an EG analyzer, model GS-23, within 6 hours of collection, and the other gases were measured in real time using a multi-gas monitor. The gas emission fluxes (source (+), and sink (-)) were calculated from a simple linear regression analysis of the changes in the concentrations over time. In order to see the surrounding parameters (water content, temperature, total organic carbon, average mean size of sediments, and the temperature of the inner chamber) were measured at the study site. On the first day, across three measurements during 5 hours 20 minutes, the observed $CO_2$ flux absorption was -137.00 to $-81.73mg/m^2/hr$, and the $O_2$ absorption, measured simultaneously, was -0.03 to $0.00mg/m^2/hr$. On the second day using an identical number of measurements, the $CO_2$ absorption was -20.43 to $-2.11mg/m^2/hr$, and the $O_2$ absorption -0.18 to $-0.14mg/m^2/hr$. The $CH_4$ absorption before low tide was $-0.02mg/m^2/hr$ (first day, Pearson correlation coefficient using the SPSS statistical analysis is -0.555(n=5, p=0.332, pronounced negative linear relationship)), and $-0.15mg/m^2/hr$ (second day, -0.915(n=5, p=0.030, strong negative linear relationship)) on both measurement days. The emitted flux after low tide on both measurement days reached a minimum of $+0.00mg/m^2/hr$ (+0.713(n=5, p=0.176, linear relationship which can be almost ignored)), and a maximum of $+0.03mg/m^2/hr$ (+0.194(n=5, p=0.754, weak positive linear relationship)) after low tide. However, the absolute values of the $CH_4$ fluxes were analyzed at different times. These results suggest that rate for $CH_4$ fluxes, even the same time and area, were influenced by changes in the tidal cycle characteristics of surface sediments for understanding their correlation with these gas emissions, and surrounding parameters such as physiochemical sediments conditions.

Studies on a Factor Affecting Composts Maturity During Composting of SWine Manure (돈분 퇴비화 중 부숙도에 미치는 영향인자 구명)

  • Kim, T.I.;Song, J. I.;Yang, C.B.;Kim, M.K.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.261-272
    • /
    • 2004
  • This study was conducted to investigate indices affecting composts maturity for swine manure compost produced in a commercial composting facility with air-forced from the bottom. The composting was made of swine manure mixed with puffing rice hull(6: 4) and turned by escalating agitator twice a day. Composting samples were collected periodically during a 45-d composting cycle at that system, showing that indices of Ammonium-N to Nitrate-N ratio were sensitive indicators of composting quality. Pile temperature maintained more than 62$^{\circ}C$ and water contents decreased about 20% for 25days of composting. A great variety and high numbers of aerobic thermophilic heterotropic microbes playing critical roles in stability of composts have been examined in the final composts, sbowing that they were detected $10^8$ to $10^{10}$ $CFUg^{-1}$ in mesophilic bacteria, $10^3$ - $10^4$ in fungi and $10^6$ - $10^8$ in actinomycetes, respectively. The results of this study for detennining a factor affecting compost stability evaluations based on composting steps were as follows; 1. Ammonium-N concentrations were highest at the beginning of composting, reaching approximately 421mg/kg. However Ammonium-N concentrations were lower during curing, reaching approximately l04mg/kg just after 45 day. The ratio between $NH_4-N$ and $NO_3-N$ was above II at the beginning of composting and less than 2 at the final step(45 day). 2. Seed germination Index was dependent upon the compost phytotoxicity and its nutrition. The phytotocity caused the GI to low during the period of active composting(till 25 days of composting time) depending on the value of the undiluted. After 25 days of composting time, the GI was dependent upon compost nutrition. The Gennination index of the final step was calculated at over 80 without regard to treatments. 3. E4: E6 ratio in humic acid of composts was correlatively decreased from 8.86 to 6.76 during the period of active composting. After 25 days of composting time, the E4: E6 was consistently decreased from 6.76 to 4.67($r^2$ of total composting period was 0.95). 4. Water soluble carbon had a tendency to increase from 0.54% to 0.78%during the period of active composting. After 25 days of composting time, it was consistently decreased from 0.78% to 0.42%. Water soluble nitrogen increased from 0.22% to 0.32% during the period of 15 days after initial composting while decreased from 0.32% to 0.21% after 15days of composting. In consequence, the correlation coefficient($r^2$) between water soluble carbon and water soluble nitrogen was 0.12 during the period of active composting mule was 0.50 after 25 days of composting time

Development of a Biophysical Rice Yield Model Using All-weather Climate Data (MODIS 전천후 기상자료 기반의 생물리학적 벼 수량 모형 개발)

  • Lee, Jihye;Seo, Bumsuk;Kang, Sinkyu
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.721-732
    • /
    • 2017
  • With the increasing socio-economic importance of rice as a global staple food, several models have been developed for rice yield estimation by combining remote sensing data with carbon cycle modelling. In this study, we aimed to estimate rice yield in Korea using such an integrative model using satellite remote sensing data in combination with a biophysical crop growth model. Specifically, daily meteorological inputs derived from MODIS (Moderate Resolution imaging Spectroradiometer) and radar satellite products were used to run a light use efficiency based crop growth model, which is based on the MODIS gross primary production (GPP) algorithm. The modelled biomass was converted to rice yield using a harvest index model. We estimated rice yield from 2003 to 2014 at the county level and evaluated the modelled yield using the official rice yield and rice straw biomass statistics of Statistics Korea (KOSTAT). The estimated rice biomass, yield, and harvest index and their spatial distributions were investigated. Annual mean rice yield at the national level showed a good agreement with the yield statistics with the yield statistics, a mean error (ME) of +0.56% and a mean absolute error (MAE) of 5.73%. The estimated county level yield resulted in small ME (+0.10~+2.00%) and MAE (2.10~11.62%),respectively. Compared to the county-level yield statistics, the rice yield was over estimated in the counties in Gangwon province and under estimated in the urban and coastal counties in the south of Chungcheong province. Compared to the rice straw statistics, the estimated rice biomass showed similar error patterns with the yield estimates. The subpixel heterogeneity of the 1 km MODIS FPAR(Fraction of absorbed Photosynthetically Active Radiation) may have attributed to these errors. In addition, the growth and harvest index models can be further developed to take account of annually varying growth conditions and growth timings.