DOI QR코드

DOI QR Code

Aerobic Capacity and Ventilatory Response During Incremental Exercise in Elite High School Cyclist

점진부하 운동에서 중고교 엘리트 사이클 선수들의 유산소능력과 폐환기 반응

  • Lee, Dae-Taek (Kim Chang Kew Exercise Physiology Laboratory, Kookmin University) ;
  • Bae, Yoon-Jung (Kim Chang Kew Exercise Physiology Laboratory, Kookmin University)
  • 이대택 (국민대학교 김창규운동생리학실험실) ;
  • 배윤정 (국민대학교 김창규운동생리학실험실)
  • Received : 2010.02.01
  • Accepted : 2010.03.22
  • Published : 2010.03.30

Abstract

This study was designed to examine the aerobic capacity and ventilatory response during an incremental exercise in elite high school cyclists. Twelve boys ($17{\pm}1\;yr$, $175{\pm}5\;cm$, $70{\pm}9\;kg$) participated in anthropometric measurements, incremental exercise testing, and pulmonary function tests. During incremental exercise testing using a cycle ergometer, their maximal oxygen uptake ($VO_2max$), maximal power output, ventilation, ventilatory equivalents for oxygen ($V_E/VO_2$) and carbon dioxide ($V_E/VCO_2$), respiratory rate, and tidal volume were measured. Time variables such as inspiratory time (Ti), expiratory time (Te), breathing time (Tb), and inspiratory duty cycle (Ti/Tb), as well as inspiratory flow rate ($V_T$/Ti) were assessed. Pulmonary function of vital capacity (FVC), forced expiratory volume in one second ($FEV_1$), $FEV_1$/FVC, and peak expiratory flow were evaluated. Their $VO_2max$, maximal heart rate, and Wmax were $57.5{\pm}3.9\;ml{\cdot}kg^{-1}{\cdot}min^{-1}$, $194.1{\pm}8.6\;beat{\cdot}min^{-1}$, and 452 W, respectively. $VO_2max$ was not related to any anthropometric parameters. Most ventilatory variables progressively increased with exercise intensity. As intensity increased, Ti, Tb, Tb decreased while Ti/Tb was maintained. Below an intensity of 250 W, height, weight, body mass index, and body surface were highly correlated with $V_T$/Ti and Ti/Tb (p<0.05). Collectively, $VO_2max$ appeared to be lower than adult cyclists, suggesting a different pattern of ventilatory control as age advances. Morphological characteristics were not related to $VO_2max$ in the population. Time variables of ventilatory response seemed to be related only at an exercise intensity level of less than 250 W. $V_T$/Ti may be related to exercise endurance capacity, but Ti/Tb was similar to adult cyclists.

국내 중고교 엘리트 사이클 선수를 대상으로 점진부하 운동 시 유산소반응과 폐환기 반응을 분석하는데 목적을 두었다. 남자 사이클 선수($17{\pm}1$ 세, $175{\pm}5\;Cm$, $70{\pm}9\;kg$) 12명이 신체계측, 점진부하 운동 검사, 폐기능 검사에 참여하였다. 사이클 에르고미터를 이용한 점진부하 운동 중 이들의 최대산소섭취량($VO_2max$)과 최대파워 (Wmax), 환기량, 산소 및 이산화탄소호흡당량($V_E/VO_2$, $V_E/VCO_2$), 호흡율, 일회호흡량 등이 측정되었다. 호흡반응의 시간변인으로 흡기시간(Ti), 호기시간(Te), 일회호흡시간(Tb), 흡기의무사이클(Ti/Tb), 흡기율($V_T$/Ti)이 분석되었다. 폐기능으로는 폐활량, 일초호기량, 일초율, 최대호기량 등이 측정되었다. 선수들은 최대운동시 $57.5{\pm}3.9\;ml{\cdot}kg^{-1}{\cdot}min^{-1}$$VO_2max$, $194.1{\pm}8.6\;beat{\cdot}min^{-1}$의 최대심박수를 보였으며, Wmax 는 평균 452 W에 도달하였다. $VO_2max$은 신체계측 변인들과 상관관계를 보이지 않았다. 대부분의 환기반응은 운동강도가 점차적으로 증가하면서 동반 증가하였다. 운동강도의 증가와 함께 Ti, Te, Tb는 감소하였으며, Ti/Tb는 대략적으로 일정하게 유지되었다. 250 W 이하에서 신장, 체중, 신체질량지수, 체표면적은 $V_T$/Ti 그리고 Ti/Tb 와 높은 상관관계를 나타냈다(p<0.05). 결과적으로, 엘리트 사이클 선수들의 최대유산소능력은 성인에 비해 낮은 것으로 보이며, 이는 성인과 호흡조절 양상이 다른 것으로 추정된다. 신체계측 변인은 $VO_2max$와 상관성이 존재하지 않았다. 호흡반응의 시간 변인은 운동강도 250 W 이하에서만 체격과 연관성을 가지는 것으로 보인다. 흡기율은 어린 선수들의 운동지속시간과 연관 있어 보이지만, 흡기의무사이클은 성인과 유사한 것으로 보인다.

Keywords

References

  1. Armstrong, N., J. Williams, J. Balding, P. Gentle, and B. Kirby. 1991. The peak oxygen uptake of British children with reference to age, sex and sexual maturity. European Journal of Applied Physiology and Occupational Physiology 62, 369-375. https://doi.org/10.1007/BF00634975
  2. Asmussen, E., N. H. Secher, and E. A. Andersen. 1981. Heart rate and ventilatory frequency as dimension-dependent variables. European Journal of Applied Physiology and Occupational Physiology 46, 379-386. https://doi.org/10.1007/BF00422125
  3. Clark, J. M., F. C. Hagerman, and R. Gelfand. 1983. Breathing patterns during submaximal and maximal exercise in elite oarsmen. Journal of Applied Physiology 55, 440-446.
  4. Coyle, E. F. 1999. Physiologicl determinants of endurance exercise performance. Journal of Science and Medicine in Sport 2, 181-189. https://doi.org/10.1016/S1440-2440(99)80172-8
  5. Davies, C. T. M., C. Barnes, and S. Godfrey. 1972. Body composition and maximal exercise performance in children. Human Biology 44, 195-214.
  6. DuBois, D. and E. F. DuBois. 1916. A formula to estimate the appropriate surface area if height and weight be known. Archives Internal Medicine 17, 863-871.
  7. Faria, E. W., D. L., Parker, and I. E. Faria. 2005. The science of cycling: physiology and training - part 1. Sports Medicine 35, 285-312. https://doi.org/10.2165/00007256-200535040-00002
  8. Faria, I. E., E. W. Faria, S. Roberts, and D. Yoshimura. 1989. Comparison of physical and physiological characteristics in elite young and mature cyclists. Research Quarterly for Exercise and Sport 60, 388-395. https://doi.org/10.1080/02701367.1989.10607469
  9. Folinsbee, L. J., E. S. Wallace, J. F. Bedi, and S. M. Horvath. 1983. Exercise respiratory pattern in elite cyclists and sedentary subjects. Medicine and Science in Sports and Exercise 15, 503-509.
  10. Gallagher, C. G., E. Brown, and M. Younes. 1987. Breathing pattern during maximal exercise and during submaximal exercise with hypercapnia. Journal of Applied Physiology 63, 238-244.
  11. Gaultier, C., L. Perret, M. Boule, A. Buvry, and F. Girard. 1981. Occlusion pressure and breathing pattern in healthy children. Respiratory Physiology 46, 71-80. https://doi.org/10.1016/0034-5687(81)90069-4
  12. Hoogeveen, A. R. 2000. The effect of endurance training on the ventilatory response to exercise in elite cyclists. European Journal of Applied Physiology 82, 45-51. https://doi.org/10.1007/s004210050650
  13. Impellizzeri, F. M., E. Rampinini, A. Sassi, P. Mognoni, and S. M. Marcora. 2005. Physiological correlates to off-road cycling performance. Journal of Sports Science 23, 41-47. https://doi.org/10.1080/02640410410001730061
  14. Kim, J. H. and E. K. Kim. 2009. The effects of periodization of strength training on athletic performance related to cycling speed in elite middle and long distance cyclists. Korean Journal of Physical Education 48, 375-388.
  15. Kim, J. H. and S. W. Yoon. 2005. The effect of road cycling training combined with strength and sprint interval training on short distance cycling-related performance. Korean Journal of Physical Education 48, 479-488.
  16. Kim, J. H. 2008. Construction of physical fitness evaluation norm and training program for racing cyclists. Korea Institute of Sport Science. Research Report 2008-2025.
  17. Kim, K. J., H. K. Ahn, D. S. Jung, S. W. Yoon, J. H. Kim, T. Y. Jung, Y. W. Lee, and C. S. Kim. 1993. Physiological analysis for the determination of detailed event in young cyclists. Korean Journal of Sports Medicine 11, 14-31.
  18. Lucia, A., A. Carvajal, F. J. Calderon, A. Alfonso, and J. L. Chicharro. 1999. Breathing pattern in highly competitive cyclists during incremental exercise. European Journal of Applied Physiology and Occupational Physiology 79, 512-521. https://doi.org/10.1007/s004210050546
  19. Lucia, A., J. Hoyos, and J. L. Chicharro. 2001a. Physiology of professional road racing. Sports Medicine 31, 325-337. https://doi.org/10.2165/00007256-200131050-00004
  20. Lucia, A., J. Hoyos, and J. L. Chicharro. 2001b. Preferred pedalling cadence in professional cycling. Medicine and Science in Sports and Exercise 33, 1361-1366. https://doi.org/10.1097/00005768-200108000-00018
  21. McParland, C., B. Krishnan, J. Lobo, and C. G. Gallagher. 1992. Effect of physical training on breathing pattern during progressive exercise. Respiratory Physiology 90, 311-323. https://doi.org/10.1016/0034-5687(92)90111-9
  22. McParland, C., J. Mink, and C. G. Gallagher. 1991. Respiratory adaptations to dead space loading during maximal incremental exercise. Journal of Applied Physiology 70, 55-62.
  23. Menaspa, P., A. Sassi, and F. M. Impellizzeri. 2009. Aerobic fitness variables do not predict the professional career of young cyclists. Medicine and Science in Sports and Exercise. [Epub ahead of print]
  24. Miilic-Emili, J. and M. M. Grunstein. 1976. Drive and timing components of ventilation. Chest 70, 131-133. https://doi.org/10.1378/chest.70.1_Supplement.131
  25. Mora-Rodriguez, R. and R. Aguado-Jimenez. 2006. Performance at high pedaling cadences in well-trained cyclists. Medicine and Science in Sports and Exercise 38, 953-957. https://doi.org/10.1249/01.mss.0000218139.46166.ec
  26. Otis, A. B. and A. R. Guyatt. 1968. The maximal frequency of breathing of man at various tidal volumes. Respiratory Physiology 5, 118-129. https://doi.org/10.1016/0034-5687(68)90081-9
  27. Padilla, A., I. Mujika, G. Cuesta, and J. J Goiriena. 1999. Level ground and uphill cycling ability in professional road cycling. Medicine and Science in Sports and Exercise 31, 878-885. https://doi.org/10.1097/00005768-199906000-00017
  28. Park, D. H. 2005. Basic, specific and selected fitness measurements and evaluation during the first half period of national team cyclists. Technical Report on Field Application of Sports Science (I), Korea Institute of Sport Science.
  29. Rutenfranz, J., K. Lange Andersen, V. Seliger, J. Ilmarinen, F. Klimmer, H. Kylian, M. Rutenfranz, and M. Ruppel. 1982. Maximal aerobic power affected by maturation and body growth during childhood and adolescence. European Journal of Pediatrics 139, 106-112. https://doi.org/10.1007/BF00441491
  30. Tanaka, H., D. R. Bassettr, T. S. Swensen, and R. M. Sampedro. 1993. Aerobic and anaerobic power characteristics of competitive cyclists in the United States Cycling Federation. International Journal of Sports Medicine 14, 334-338. https://doi.org/10.1055/s-2007-1021188
  31. Yamaji, K. and M. Miyashita. 1978. Differences in cardio-respiratory responses to exhaustive exercise between athletes and non-athletes. European Journal of Applied Physiology and Occupational Physiology.38, 233-238. https://doi.org/10.1007/BF00423106