• Title/Summary/Keyword: Carbon Capture and Storage

Search Result 162, Processing Time 0.03 seconds

Reservoir Modeling for Carbon Dioxide Sequestration and Enhanced Oil Recovery (이산화탄소 지중저장과 원유 회수증진 공정을 위한 저류층 모델링)

  • Kim, Seung-Hyok;Lee, Jong-Min;Yoon, En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2012
  • Manifold researches for carbon capture and storage (CCS) have been developed and large scale-carbon capture system can be performed recently. Hence, the technologies for $CO_2$ sequestration or storage become necessary to handle the captured $CO_2$. Among them, enhanced oil recovery using $CO_2$ can be a solution since it guarantees both oil recovery and $CO_2$ sequestration. In this study, the miscible flow of oil and $CO_2$ in porous media is modeled to analyze the effect of enhanced oil recovery and $CO_2$ sequestration. Based on Darcy-Muskat law, the equation is modified to consider miscibility of oil and $CO_2$ and the change of viscosity. Finite volume method is used for numerical modeling. As results, the pressure and oil saturation changes with time can be predicted when oil, water, and $CO_2$ are injected, respectively, and $CO_2$ injection is more efficient than water injection for oil recovery.

Design and Construction Study of an Injection Facility for CO2 Offshore Storage (CO2 해상 지중저장을 위한 주입설비 설계 및 구축 연구)

  • Moon, Hung-Man;Kim, Hyo-Joon;Shin, Se-Jin;Lee, Yong-Il;Kwon, Si-Hyun;Kwon, Yi-Kyun
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.207-215
    • /
    • 2018
  • Almost all countries of the world have recently made great efforts to reduce green-house gases to alleviate the global warming threatening human survival, because a huge amount of carbon dioxide as one of the main green-house gases has been emitted from the combustion processes of fossil fuels such as coal and oil. $CO_2$ capture and storage (CCS) technology is a representative method to diminish the green-house gases, and actively investigated by many countries. This study focuses on the design and construction of a high pressure $CO_2$ injection facility to store it to underground, which is the first $CO_2$ injection in Korea following the steps of the $CO_2$ capture from large $CO_2$ emission sources and transportation to the sea. Injection tests of $CO_2$ on the platform on the sea were carried out in Yeongil Bay of Pohang city in the early 2017. Thus, we were able to perceive the necessary operating conditions of the injection facility, injection characteristic, and knowhow of the injection facility. The results obtained from the injection test shall be utilized for facility upgrades and scale-ups.

A Study on the Oxy-Combustion of the Coal in Drop Tube Furnace (Drop Tube Furnace에서 석탄의 순산소 연소 특성)

  • Roh, Seon Ah;Yun, Jin Han;Lee, Jung Kyu;Keel, Sang In;Min, Tai Jin;Kim, Sang-Bok;Park, In-Yong;Han, Bangwoo;Kim, Jin-Tae
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.367-371
    • /
    • 2021
  • The oxy-combustion system is one of the carbon recovery and storage technologies (CCS: Carbon capture & storage) that performs coal combustion using pure oxygen and recirculated flue gas. This is a technology that facilitates storage of carbon dioxide by generating an exhaust gas consisting of only carbon dioxide without a process of separating carbon dioxide and nitrogen when coal is burned using pure oxygen and recirculated flue gas mixture instead of a conventional air combustion system that produces carbon dioxide and nitrogen mixed exhaust gas. In this study, the characteristics of generated NO and SO2 as atmospheric pollutants during oxy-combustion were examined using O2/CO2 mixed simulation gas. The reaction temperature was varied from 900 ℃ to 1200 ℃ and oxygen partial pressure was varied from 30% to 50%. The results showed that NO and SO2 concentrations in flue gas increased as the oxygen concentration and the reaction temperature in the furnace increased. The partial pressure of CO2 in flue gas also increased as the oxygen concentration and the reaction temperature in the furnace increased. As a results of comparing NO production of 30% O2/CO2 oxy-combustion with air combustion, NO in flue gas increased with reaction temperature in both experiments and NO of oxy-combustion was 40 ~ 80 ppm lower than that of air combustion.

Characterization of Potassium Based Dry CO2 Sorbents Developed for the Reduction of Side Reactions (부반응 저감 조성 K계 건식 CO2 흡수제 특성평가)

  • Jang, Young-shin;Kim, Ui-sik;Yoon, Yang-no;Baek, Jeom-In
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.337-341
    • /
    • 2019
  • In this study, the effects of two materials, active alumina and CaO based inorganic binder, which cause the side reaction on the K2CO3-based solid CO2 sorbents was investigated. K2CO3-based solid sorbents called KAM series was prepared by spray drying method and then measured its physical properties and CO2 sorption capacity. Among the KAM series sorbents, KAM(0.5) maintained high CO2 sorption capacity of 7.6 wt% after 3 cycle of sorption/regeneration reaction and showed very low attrition loss as low as 3.1 % which was measured by ASTM D5757-95.

Seasonal Variation of Bacterial Community Composition in Sediments and Overlying Waters of the South East Sea (동해 남부 해역 퇴적물과 저층 해수 세균 군집 조성의 계절적 변화 연구)

  • Choi, Dong Han;Gim, Byeong-Mo;Choi, Tae Seob;Lee, Jung-Suk;Noh, Jae Hoon;Park, Young-Gyu;Kang, Seong-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.2
    • /
    • pp.147-154
    • /
    • 2014
  • Bacteria play an important role in biogeochemical cycles in marine environments and their functional attributes in ecosystems depend primarily on species composition. In this study, seasonal variation of bacterial diversity was investigated by pyrosequencing of 16S rDNA in surface sediment and overlying seawater collected in the south East Sea, planned for the site of $CO_2$ sequestration by the carbon capture and storage (CCS) project. Gammaproteobacteria was dominant in the sediment in most seasons, whereas Alphaproteobacteria was a most dominant group in the overlying water. Thus, the bacterial diversity greatly differ between sediment and seawater samples. On the genus level, bacterial diversity between two habitats was also different. However, the number of genera found over 5% were less than 10 in both habitats and the bacterial community was composed of a number of diverse minor or rare genera. Elevation of $CO_2$ concentration during a $CO_2$ storage process, could result in change of bacterial diversity. Thus, this study will be very useful to access the effect of $CO_2$ on bacterial diversity and to predict functional change of the ecosystem during the process of CCS project.

Study on Characteristic of CO2 Hydrate Formation Using Micro-sized Ice (미세직경 얼음을 이용한 CO2 하이드레이트 제조특성 연구)

  • Lee, Jong-Hyub;Kang, Seong-Pil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.690-695
    • /
    • 2012
  • Gas hydrate is an inclusion compound consisting of water and low molecular weight gases, which are incorporated into the lattice structure of water. Owing to its promising aspect to application technologies, gas hydrate has been widely studied recently, especially $CO_2$ hydrate for the CCS (Carbon Capture and Storage) issue. The key point of $CO_2$ hydrate technology for the CCS is how to produce gas hydrate in an efficient and economic way. In this study, we have tried to study the characteristic of gas hydrate formation using micro-sized ice through an ultrasonic nozzle which generate 2.4 MHz frequency wave. $CO_2$ as a carrier gas brings micro-sized mist into low-temperature reactor, where the mist and carrier gas forms $CO_2$ hydrate under $-55^{\circ}C$ and atmospheric pressure condition and some part of the mist also remains unreacted micro-sized ice. Formed gas hydrate was average 10.7 of diameter at average. The starting ice particle was set to constant pressure to form $CO_2$ hydrate and the consumed amount of $CO_2$ gas was simultaneously measured to calculate the conversion of ice into gas hydrate. Results showed that the gas hydrate formation was highly suitable because of its extremely high gas-solid contact area, and the formation rate was also very high. Self-preservation effect of $CO_2$ hydrate was confirmed by the measurement of $CO_2$ hydrate powder at normal and at pressed state, which resulted that this kind of gas storage and transport could be feasible using $CO_2$ hydrate formation.

A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations (현무암 CO2 지중저장 해외 연구 사례 조사 및 타당성 분석)

  • Hyunjeong Jeon;Hyung Chul Shin;Tae Kwon Yun;Weon Shik Han;Jaehoon Jeong;Jaehwii Gwag
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.311-330
    • /
    • 2023
  • Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e., large volume, high reactivity and surplus of cation components) have been recognized to be potentially favorable in facilitation of CCS; based on this, research on utilization of basaltic formations for underground CO2 storage is currently ongoing in various fields. This study investigated the feasibility of underground storage of CO2 in basalt, based on the examination of the CO2 storage mechanisms in subsurface, assessment of basalt characteristics, and review of the global research on basaltic CO2 storage. The global research examined were classified into experimental/modeling/field demonstration, based on the methods utilized. Experimental conditions used in research demonstrated temperatures ranging from 20 to 250 ℃, pressure ranging from 0.1 to 30 MPa, and the rock-fluid reaction time ranging from several hours to four years. Modeling research on basalt involved construction of models similar to the potential storage sites, with examination of changes in fluid dynamics and geochemical factors before and after CO2-fluid injection. The investigation demonstrated that basalt has large potential for CO2 storage, along with capacity for rapid mineralization reactions; these factors lessens the environmental constraints (i.e., temperature, pressure, and geological structures) generally required for CO2 storage. The success of major field demonstration projects, the CarbFix project and the Wallula project, indicate that basalt is promising geological formation to facilitate CCS. However, usage of basalt as storage formation requires additional conditions which must be carefully considered - mineralization mechanism can vary significantly depending on factors such as the basalt composition and injection zone properties: for instance, precipitation of carbonate and silicate minerals can reduce the injectivity into the formation. In addition, there is a risk of polluting the subsurface environment due to the combination of pressure increase and induced rock-CO2-fluid reactions upon injection. As dissolution of CO2 into fluids is required prior to injection, monitoring techniques different from conventional methods are needed. Hence, in order to facilitate efficient and stable underground storage of CO2 in basalt, it is necessary to select a suitable storage formation, accumulate various database of the field, and conduct systematic research utilizing experiments/modeling/field studies to develop comprehensive understanding of the potential storage site.

Process Design of Carbon Dioxide Storage in the Marine Geological Structure: I. Comparative Analysis of Thermodynamic Equations of State using Numerical Calculation (이산화탄소 해양지중저장 처리를 위한 공정 설계: I. 수치계산을 통한 열역학 상태방정식의 비교 분석)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.181-190
    • /
    • 2008
  • To response climate change and Kyoto protocol and to reduce greenhouse gas emissions, marine geological storage of $CO_2$ is regarded as one of the most promising option. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources(eg. power plant), to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. To design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of this paper is to compare and analyse the relevant equations of state including ideal, BWRS, PR, PRBM and SRK equation of state. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. Ideal and SRK equation of state did not predict the density behavior above $29.85^{\circ}C$, 60 bar. Especially, they showed maximum 100% error in supercritical state. BWRS equation of state did not predict the density behavior between $60{\sim}80\;bar$ and near critical temperature. On the other hand, PR and PRBM equation of state showed good predictive capability in supercritical state. Since the thermodynamic conditions of $CO_2$ reservoir sites correspond to supercritical state(above $31.1^{\circ}C$ and 73.9 bar), we conclude that it is recommended to use PR and PRBM equation of state in designing of $CO_2$ marine geological storage process.

  • PDF

Experimental Study on the Argon Impurity Effect in the Pressure Drop of CO2 mixture flow (관내 이산화탄소 압력강하에 아르곤 불순물이 미치는 영향에 관한 실험적 연구)

  • Cho, Meang-Ik;Kang, Seong-Gil;Huh, Cheol;Baek, Jong-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8870-8878
    • /
    • 2015
  • During the carbon-dioxide capture and storage(CCS) process, $CO_2$ is captured from large point source, and then injected and stored in stable geological structure for thousands and more years. Inside the captured $CO_2$ flow, various impurities, such as $N_2$, $O_2$, argon, etc, are included inevitably. These impurities affect on the CCS process on various aspects. In this study, we designed and built experimental facility to evaluate the various impurity effect on the $CO_2$ pipeline flow, and analyzed the effect of argon ratio and pressure variation on the pressure drop of $CO_2$ flow. By comparing experimental data with 4 kinds of pressure drop model, we figured out and recommended the Cicchitti's model since it showed most accurate result among compared models in this study.

Carbon Dioxide Capture and Carbonate Synthesis via Carbonation of KOH-Dissolved Alcohol Solution (KOH-알코올 용액의 탄산화를 통한 이산화탄소 포집 및 탄산염 합성)

  • Kim, Eung-Jun;Han, Sang-Jun;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.597-606
    • /
    • 2015
  • This work investigates the carbonation of KOH-dissolved methanol and ethanol solution systems carried out for $CO_2$ fixation. Potassium methyl carbonate (PMC) and potassium ethyl carbonate (PEC) were synthesized during the reaction in each solution as the solid powder, and they were characterized in detail. The amount of $CO_2$ chemically absorbed to produce the PMC and PEC precipitates were calculated to be 97.90% and 99.58% of their theoretical values, respectively. In addition, a substantial amount of $CO_2$ was physically absorbed in the solution during the carbonation. PMC precipitates were consisted of the pure PMC and $KHCO_3$ with the weight ratio of 5:5, respectively. PEC precipitates were also mixture of the pure PEC and $KHCO_3$ with the weight ratio of 8:2, respectively. When these two precipitates were dissolved in excess water, methanol and ethanol were regenerated remaining solid $KHCO_3$ in the solutions. Therefore, the process has the potential to be one of the efficient options of CCS and CCU technologies.