DOI QR코드

DOI QR Code

Carbon Dioxide Capture and Carbonate Synthesis via Carbonation of KOH-Dissolved Alcohol Solution

KOH-알코올 용액의 탄산화를 통한 이산화탄소 포집 및 탄산염 합성

  • Kim, Eung-Jun (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Han, Sang-Jun (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Wee, Jung-Ho (Department of Environmental Engineering, The Catholic University of Korea)
  • 김응준 (가톨릭대학교 환경공학과) ;
  • 한상준 (가톨릭대학교 환경공학과) ;
  • 위정호 (가톨릭대학교 환경공학과)
  • Received : 2015.01.08
  • Accepted : 2015.08.28
  • Published : 2015.11.30

Abstract

This work investigates the carbonation of KOH-dissolved methanol and ethanol solution systems carried out for $CO_2$ fixation. Potassium methyl carbonate (PMC) and potassium ethyl carbonate (PEC) were synthesized during the reaction in each solution as the solid powder, and they were characterized in detail. The amount of $CO_2$ chemically absorbed to produce the PMC and PEC precipitates were calculated to be 97.90% and 99.58% of their theoretical values, respectively. In addition, a substantial amount of $CO_2$ was physically absorbed in the solution during the carbonation. PMC precipitates were consisted of the pure PMC and $KHCO_3$ with the weight ratio of 5:5, respectively. PEC precipitates were also mixture of the pure PEC and $KHCO_3$ with the weight ratio of 8:2, respectively. When these two precipitates were dissolved in excess water, methanol and ethanol were regenerated remaining solid $KHCO_3$ in the solutions. Therefore, the process has the potential to be one of the efficient options of CCS and CCU technologies.

KOH가 용해된 메탄올 및 에탄올 용액의 탄산화를 통해 Potassium methyl carbonate (PMC) 및 Potassium ethyl carbonate (PEC) 침전물을 합성하여 $CO_2$를 고정화하고 침전물의 특성 연구를 수행하였다. PMC 및 PEC는 $CO_2$의 화학 흡수 반응에 의해 고체 침전물로 합성되고 이를 위해 소비된 $CO_2$양은 각 이론 값의 97.90% 및 99.58%이며 탄산화 중 상당량의 물리 흡수도 일어난다. 합성된 침전물은 PMC 및 PEC와 $KHCO_3$의 중량 비율이 약 5:5 및 8:2인 혼합물이며 침전물들은 물에 용해되어 알코올이 재생되고 최종 $KHCO_3$가 회수됨에 따라 본 공정은 효율적인 하나의 CCS 또는 CCU 기술로 활용될 가능성이 있다.

Keywords

References

  1. Heitmann, N. and Khalilian, S., "Accounting for carbon dioxide emissions from international shipping: Burden sharing under different UNFCCC allocation options and regime scenarios," Mar. Policy., 35(2), 682-691(2011). https://doi.org/10.1016/j.marpol.2011.02.009
  2. Park, S. D., "Carbon capture and Storage," News Inf. Chem. Eng., 27(2), 143(2009).
  3. Klemes, J., Bulatov, I. and Cockerill, T., "Techno-economic modelling and cost functions of $CO_2$ capture processes," Comput. Chem. Eng., 31, 445-455(2007). https://doi.org/10.1016/j.compchemeng.2006.06.002
  4. Sada E., Kumazawa, H., Osawa, Y., Matsuura, M. and Han, Z., "Reaction kinetics of carbon dioxide with amines in nonaqueous solvents," Chem. Eng. J., 33, 87-95(1986). https://doi.org/10.1016/0300-9467(86)80038-7
  5. Reynolds, A. J., Verheyen, T. V., Adeloju, S. B., Chaffee, A. and Meuleman, E., "Quantification of Aqueous Monoethanolamine Concentration by Gas Chromatography for Postcombustion Capture of $CO_2$," Ind. Eng. Chem., 53(12), 4808-4811(2014).
  6. Shim, J. G., Kim, J. H., Jang, K. R. and Eum, H. M, "Absorption Characteristics of MEA with Carbon Dioxide from the Real Flue Gas using a Pilot Plant," Environ. Eng. Res., 25(12), 1557-1563(2003).
  7. Oh, K. J, Lee, S. S., Choi, W. J., Lee, J. J. and Shon, B. H., "Absorption and Regeneration Characteristics of Carbon Dioxide by Aqueous MEA/AMP Solutions," Environ. Eng. Res., 25(5), 609-615(2003).
  8. Zhao, B., Sun, Y., Yuan, Y., Gao, J., Wang, S., Zhuo, Y. and Chen, C., "Study on corrosion in $CO_2$ chemical absorption process using Amine solution," Energy Procedia, 4, 93-100(2011). https://doi.org/10.1016/j.egypro.2011.01.028
  9. Qin, F., Wang, S., Hartono, A., Svendsen, H. F. and Chen, C., "Kinetics of $CO_2$ absorption in aqueous ammonia solution," Int. J. Greenh. Gas. Control., 4, 729-738(2010). https://doi.org/10.1016/j.ijggc.2010.04.010
  10. Henning, L., "Post-Combustion $CO_2$ Capture Using Chemical Absorption," Norwegian University of Science and Technology, Trondheim(2007).
  11. Kosugi, T., Hayashi, A., Matsumoto, T., Akimoto, K., Tokimatsu, K., Yoshida, H., Tomoda, T. and Kaya, Y., "Time to realization: Evaluation of $CO_2$ capture technology R&Ds by GERT (Graphical Evaluation and Review Technique) analyses," Energy, 29(9), 1297-1308(2004). https://doi.org/10.1016/j.energy.2004.03.088
  12. Seo, S., Simoni, L. D., Ma, M. M., DeSilva, A., Huang, Y., Stadtherr, M. A. and Brennecke, J. F., "Phase-Change Ionic Liquids for Postcombustion $CO_2$ Capture," Energy Fuel., 28(9), 5968-5977(2014). https://doi.org/10.1021/ef501374x
  13. Fracaroli, A. M., Furukawa, H., Suzuki, M., Dodd, M., Okajima, S., Gandara, F., Reimer, J. A. and Yaghi, O. M., "Metal-Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water," J. Am. Chem. Soc., 136(25), 8863-8866(2014). https://doi.org/10.1021/ja503296c
  14. Hanaka, D. P., Biliyoka, C., Yeunga, H. and Bialeckib, R., "Heat integration and exergy analysis for a supercritical highash coal-fired power plant integrated with a post-combustion carbon capture process," Fuel, 134(15), 126-139(2014). https://doi.org/10.1016/j.fuel.2014.05.036
  15. Shim, J. G., Kim, J. H. and Jang, K. R., "Absorption characteristics of Aqueous Sodium Glycinate Solution with Carbon Dioxide and Its Mechanistic Analysis," Environ. Eng. Res., 30(4), 430-438(2008).
  16. Tim, G., Anderson, C. and Hooper, B., "Comparative life cycle assessment of potassium carbonate and monoethanolamine solvents for $CO_2$ capture from post combustion flue gases," Int. J. Greenh. Gas. Control., 28, 35-44(2014). https://doi.org/10.1016/j.ijggc.2014.06.020
  17. Kothandaramana, A., Nordb, L., Bollandb, O., Herzogc, H. J. and McRaea, G. J., "Comparison of solvents for post-combustion capture of $CO_2$ by chemical absorption," Energy Procedia, 1(1), 1373-1380(2009). https://doi.org/10.1016/j.egypro.2009.01.180
  18. Strohle, J., Lasheras, A., Galloy, A. and Epple, B., "Simulation of the Carbonate Looping Process for Post-Combustion $CO_2$ Capture from a Coal-Fired Power Plant," Chem. Eng. Technol., 32(3), 435-442(2009). https://doi.org/10.1002/ceat.200800569
  19. Pirngruber, G. D., Guillou, F., Gomez, A. and Clausse, M., "A theoretical analysis of the energy consumption of postcombustion $CO_2$ capture processes by temperature swing adsorption using solid sorbents," Int. J. Greenh. Gas. Control., 14, 74-83(2013). https://doi.org/10.1016/j.ijggc.2013.01.010
  20. Hedin, N., Andersson, L., Bergstrom, L. and Yan, J., "Adsorbents for the post-combustion capture of $CO_2$ using rapid temperature swing or vacuum swing adsorption," Appl. Energy, 104, 418-433(2013). https://doi.org/10.1016/j.apenergy.2012.11.034
  21. Park, G. W., Park, Y. S., Park, Y. C., Jo, S. H. and Yi, C. K., "Study of $CO_2$ Carbonation-Regeneration Characteristics of Potassium-Based Dry Sorbents According to Water Vapor Contents of Inlet Gas and Regeneration Temperature in the Cycle Experiments of Bubbling Fluidized-Bed Reactor," Korean. Chem. Eng. Res., 47(3), 349-354(2009).
  22. Merkel, T. C., Lin, H., Wei, X. and Baker, R., "Power plant post-combustion carbon dioxide capture: an opportunity for membranes," J. Membr. Sci., 359(1), 126-139(2010). https://doi.org/10.1016/j.memsci.2009.10.041
  23. Snider, M. T. and Verweij, H., "Gas sorption studies on Zeolite Y membrane materials for post-combustion $CO_2$ capture in coal-fired plants," Microp. Mesop. Mater, 192, 3-7 (2014). https://doi.org/10.1016/j.micromeso.2013.10.022
  24. Franz, J., Schiebahn, S., Zhao, L., Riensche, E., Scherer, V. and Stolten, D., "Investigating the influence of sweep gas on $CO_2$/$N_2$ membranes for post-combustion capture," Int. J. Greenh. Gas. Control., 13, 180-190(2013). https://doi.org/10.1016/j.ijggc.2012.12.008
  25. Anderson, C., Ho, M., Harkin, T., Pandit, J., Wiley, D. and Hooper, B., "UNO MK 3 precipitating carbonate process for carbon Dioxide ($CO_2$) capture: Cost scenarios for partial capture," Energy Procedia, 37, 225-232(2013). https://doi.org/10.1016/j.egypro.2013.05.106
  26. Liu, J., Wang, S., Qi, G., Zhao, B. and Chen, C., "Kinetics and mass transfer of carbon dioxide absorption into aqueous ammonia," Energy Procedia, 4, 525-532(2011). https://doi.org/10.1016/j.egypro.2011.01.084
  27. Erga, O., Juliussen, O. and Lidal, H., "Carbon dioxide recovery by means of aqueous amines," Energy Convers. Manage., 36(6), 387-392(1995). https://doi.org/10.1016/0196-8904(95)00027-B
  28. Yang, N., Xu, D. Y., Yu, H., Conway, W., Maeder, M. and Feron, P., "Potassium sarcosinate promoted aqueous ammonia solution for post-combustion capture of $CO_2$," Adv. Space Res., 4(4), 555-567(2014).
  29. Song, H. J., Lee. S., Lee, J., Park, J. W., Jang, K. R., Shim, J. G. and Kim. J. H., "Absorption of Carbon Dioxide into Aqueous Potassium Salt of Serine," Environ. Eng. Res., 31 (7), 505-514(2009).
  30. Descamps, C., Bouallou, C. and Kanniche, M., "Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including $CO_2$ removal," Energy, 33(6), 874-881(2008). https://doi.org/10.1016/j.energy.2007.07.013
  31. Gallegos, A., Shimazaki, T. and Oliva, R. M., "Sodium removal, storage, and requalification of components [LMFBR]," Atomics International Div., Canoga Park, CA (USA). Energy Systems Group(1974).
  32. Ichiro, H., Taketoshi, K., Takatomo, F., Taketoshi, M. and Katsuyuki, U, "Carboxylation of phenol derivatives. 22. Formation of alkali alkyl carbonate by the O-carboxylation of alcohol in the presence of an alkali salt of a weak acid," B. Chem. Soc. Jpn., 49(10), 2775-2779(1976). https://doi.org/10.1246/bcsj.49.2775
  33. Rahayu, S. S. and Mindaryani, A., "Methanolysis of coconut oil: the kinetic of heterogeneous reaction," Proc. World. Cong. Eng. Comput. Sci., 1, 134-138(2009).
  34. Cirjaliu-Murgea, M., Ionita, A. D., Filipescu, L., Chitu, E. and Chitu, V., "Emulsified nutritive fluids and their proprieties control," 6th International ISHS Symposium on Mineral Nutrition, Faro, Portugal(2008).
  35. John. M. and William, H., "Preparation of dimethyl ether from alkali metal methyl carbonates," United states patent office, pp. 1679-1684(1958).
  36. Ortrud, A. and Styring, P., "Comparative study of solvent properties for carbon dioxide absorption," Energy Environ. Sci., 3(8), 1106-1113(2010). https://doi.org/10.1039/c002915g
  37. Atherton, S., "Solubilities of inorganic and metal organic compounds: a compilation of quantitative solubility data from the periodical literature," van Nostrand, p. 2(1941).
  38. Han, S. J., Yoo, M. R, Kim, D. W. and Wee, J. H, "Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent," Energy Fuel., 25(8), 3825-3834(2011). https://doi.org/10.1021/ef200415p