• Title/Summary/Keyword: Carbon/carbon-based materials

검색결과 1,325건 처리시간 0.025초

기지내 반응법에 의한 WC 복합재료의 제조에 관한 연구(1);주조접합된 주철/텅스텐 와이어의 계면반응층 생성기구와 조직특성 (A Study on the Manufacture of WC MMCs by In-situ Reaction Process(1);The Formation Mechanism of Interfacial Reaction Layer in Cast-bonded Cast iron/W wire and Its Structure)

  • 박흥일;김창업;허보영;이성렬;김창규
    • 한국주조공학회지
    • /
    • 제15권3호
    • /
    • pp.272-282
    • /
    • 1995
  • Iron-based metal matrix composites have been recently investigated for the use of inexpensive abrasion resistance material. This paper carried out to investigate the in-situ reaction effects on the microstructural characteristics and the formation mechanism of tungsten carbides in a white cast iron matrix. The specimens of Fe-3.2%C-2.8%Si alloy cast-bonded with tungsten wire were cast in the metal mold and isothermally heat treated at $950^{\circ}C$ up to 48 hours. The typical microstructure of heat treated specimens showed the reaction layer of WC at the interface of tungsten wire and the carbon depletion zone between the WC layer and the matrix. During the formation of WC layer, if the carbon supply is insufficient due to the decarburization of matrix or the isolation of matrix by cast-bonded W wires, the reaction layer develops coarse hexagonal crystalline WC. From the microstructural investigation, it was found that the volume of WC layer and the carbon depletion zone increased linearly with the isothermal heat treating time. This results supported that the formation rate of WC in the white cast iron matrix is controlled by the interfacial reaction with a constant reaction rate.

  • PDF

시료용액의 특성에 따른 고정화된 단일벽 탄소나노튜브의 전기적 거동 (Electrical Property of Immobilized SWNTs Bundle as Bridge between Electrodes in Nanobiosensor Depending on Solvent Characteristics)

  • 이진영;조재훈;박철환
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.115-120
    • /
    • 2017
  • 현재 세계적인 이슈가 되고 있는 나노과학과 기술은 탄소나노튜브(CNTs)를 기반으로 한 바이오센서 성능 향상에 주력하고 있다. 다양한 기능성을 가진 CNTs는 높은 안정성과 바이오 수용체와 같은 생체물질과의 높은 적합성으로 이를 이용한 바이오 전극 기술에 힘입어 의학, 식품 및 환경에서 이슈가 되는 물질들을 검출하기 위한 산업적 응용 연구가 주목받고 있다. 본 연구에서는 이러한 CNTs를 이용한 전기화학적 바이오센서에 있어서 시료가 액체 상태로 검출이 예상되는데 그 시료의 화학적 특성에 따른 금 전극 사이에 고정화된 CNTs의 전자전달현상을 조사하였다. 그 결과, 시료가 극성인 경우와 무극성인 경우 고정화된 CNTs의 전자전달 현상이 다르게 나타났으며, 극성의 세기가 증가할수록 전자의 이동에 방해를 받는 것으로 확인되었다. 이는 CNTs의 양끝에 존재하는 극성 작용기와의 상호작용에 의한 것으로서 센서 디바이스 전체를 시료 용액에 침투시켜 전자이동을 관찰한 결과와 달리 안정적으로 저항값을 나타내는 것으로 확인되었다. 향후 민감도가 높은 CNTs 기반 나노바이오센서 개발 시 시료의 효과적인 전처리 공정에서 이러한 용매의 극성을 고려한 최적화 연구가 필요하다.

Direct Electrochemistry and Electrocatalysis of Myoglobin with CoMoO4 Nanorods Modified Carbon Ionic Liquid Electrode

  • Zhao, Zengying;Cao, Lili;Hu, Anhui;Zhang, Weili;Ju, Xiaomei;Zhang, Yuanyuan;Sun, Wei
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.475-481
    • /
    • 2013
  • By using ionic liquid 1-hexylpyridinium hexafluorophosphate ($HPPF_6$) based carbon ionic liquid electrode (CILE) as the substrate electrode, a $CoMoO_4$ nanorods and myoglobin (Mb) composite was casted on the surface of CILE with chitosan (CTS) as the film forming material to obtain the modified electrode (CTS/$CoMoO_4$-Mb/CILE). Spectroscopic results indicated that Mb retained its native structures without any conformational changes after mixed with $CoMoO_4$ nanorods and CTS. Electrochemical behaviors of Mb on the electrode were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks from the heme Fe(III)/Fe(II) redox center of Mb appeared, which indicated that direct electron transfer between Mb and CILE was realized. Electrochemical parameters such as the electron transfer number (n), charge transfer coefficient (${\alpha}$) and electron transfer rate constant ($k_s$) were estimated by cyclic voltammetry with the results as 1.09, 0.53 and 1.16 $s^{-1}$, respectively. The Mb modified electrode showed good electrocatalytic ability toward the reduction of trichloroacetic acid in the concentration range from 0.1 to 32.0 mmol $L^{-1}$ with the detection limit as 0.036 mmol $L^{-1}$ ($3{\sigma}$), and the reduction of $H_2O_2$ in the concentration range from 0.12 to 397.0 ${\mu}mol\;L^{-1}$ with the detection limit as 0.0426 ${\mu}mol\;L^{-1}$ ($3{\sigma}$).

OpenLCATM DB를 이용한 농촌 공동체 건축물 전과정평가 (Life Cycle Assessment of Rural Community Buildings Using OpenLCATM DB)

  • 김용민;이병준;윤성수
    • 한국농공학회논문집
    • /
    • 제63권3호
    • /
    • pp.97-105
    • /
    • 2021
  • Most of the rural development projects for the welfare of residents are mainly new construction and remodeling projects for community buildings such as village halls and senior citizens. However, in the case of the construction industry, it has been studied that 23% of the total carbon dioxide emissions generated in Korea are generated in the building-related sector. (GGIC, 2015) In order to reduce the emission of environmental pollutants resulting from construction of rural community buildings, there is a need to establish a system for rural buildings by predicting the environmental impact. As a result of this study, the emissions of air pollutants from buildings in rural communities were analyzed by dividing into seven stages: material production, construction, operation, maintenance, demolition, recycling, and transportation activities related to disposal. As a result, 12 kg of carbon dioxide (CO), 0.06 kg of carbon monoxide (CO), 0.02 kg of methane (CH), 0.04 kg of nitrogen oxides (NO), 0.02 kg of sulfurous acid gas (SO), and non-methane volatile organics per 1m of buildings in rural communities It was analyzed that 0.02 kg of compound (NMVOC) and 0.00011 kg of nitrous oxide (NO) were released. This study proved that environmentally friendly design is possible with a quantitative methodology for the comparison of operating energy and air pollutant emissions through the design specification change based on the statement of the rural community building. It is considered that it can function as basic data for further research by collecting major structural changes and materials of rural community buildings.

샘플러에 따른 측정 위치별 원소탄소의 농도 비율 (Ratio of Elemental Carbon Concentrations for Respective Measurement Locations according to the Sampler)

  • 차원석;김은영;최성원;최수연
    • 한국산업보건학회지
    • /
    • 제31권4호
    • /
    • pp.461-472
    • /
    • 2021
  • Objectives: This study was conducted to determine the differences in EC concentrations according to the type of sampler by measuring and analyzing EC. Methods: Elemental carbon was measured in diesel engine vehicles and at the roadside. Using NIOSH method 5040, a cassette was coupled to 37 mm and 27 mm quartz filters and measurements were performed 21 times. There were 14 types of measurement methods, and polystyrene, polypropylene, and metal samplers were evenly placed inside the movable chamber. Results: The results measured using the 37 mm conductive cassette (closed/open) and the IOM sampler made of conductive materials showed a higher ratio than the other results. When the 37 mm conductive cassette was measured with the lid open, it showed a statistically significantly higher ratio than with other measurement methods (p<0.05). Conclusions: Checking the EC concentration a total of 21 times at each ratio based on the concentration of the 3-stage polystyrene cassette, it was statistically significantly higher when the 37 mm conductive cassette was open. This same cassette also showed a slightly higher EC concentration when closed. It was ascertained that some DEE was collected on the cassette wall surface due to the electrical conductivity of the polystyrene cassette, resulting in sample loss. Since EC is composed of fine particles, it is thought that electrical conductivity may affect its concentration.

Oxidized Carbon Nanosphere-Based Subunit Vaccine Delivery System Elicited Robust Th1 and Cytotoxic T Cell Responses

  • Sawutdeechaikul, Pritsana;Cia, Felipe;Bancroft, Gregory J.;Wanichwecharungruang, Supason;Sittplangkoo, Chutamath;Palaga, Tanapat
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권3호
    • /
    • pp.489-499
    • /
    • 2019
  • Subunit vaccines are safer and more stable than live vaccines although they have the disadvantage of eliciting poor immune response. To develop a subunit vaccine, an effective delivery system targeting the key elements of the protective immune response is a prerequisite. In this study, oxidized carbon nanospheres (OCNs) were used as a subunit vaccine delivery system and tuberculosis (TB) was chosen as a model disease. TB is among the deadliest infectious diseases worldwide and an effective vaccine is urgently needed. The ability of OCNs to deliver recombinant Mycobacterium tuberculosis (Mtb) proteins, Ag85B and HspX, into bone marrow derived macrophages (BMDMs) and dendritic cells (BMDCs) was investigated. For immunization, OCNs were mixed with the two TB antigens as well as the adjuvant monophosphoryl lipid A (MPL). The protective efficacy was analyzed in vaccinated mice by aerosol Mtb challenge with a virulent strain of Mtb and the bacterial burdens were measured. The results showed that OCNs are highly effective in delivering Mtb proteins into the cytosol of BMDMs and BMDCs. Upon immunization, this vaccine formula induced robust Th1 immune response characterized by cytokine profiles from restimulated splenocytes and specific antibody titer. More importantly, enhanced cytotoxic $CD8^+$ T cell activation was observed. However, it did not reduce the bacteria burden in the lung and spleen from the aerosol Mtb challenge. Taken together, OCNs are highly effective in delivering subunit protein vaccine and induce robust Th1 and $CD8^+$ T cell response. This vaccine delivery system is suitable for application in settings where cell-mediated immune response is needed.

보강섬유와 고로슬래그 미분말 함유량에 따른 차수그라우트재 개발 (Development of Reinforcement Grout Materials Using Reinforcing Fiber and Blast Furnace Slag Powder)

  • 서혁;김대현
    • 한국지반신소재학회논문집
    • /
    • 제18권3호
    • /
    • pp.101-112
    • /
    • 2019
  • 그라우팅 공법은 연약지반의 보강과 방수, 부등침하로 손상된 구조물의 지지력을 향상시킨다. 본 연구는 보강섬유와 고로슬래그 미분말을 이용하여 그라우트재의 압축강도와 차수를 향상시키는데 있다. 이와 관련하여 본 연구에서는 고로슬래그 미분말의 비율이 높은(50% 이상) 시료에 대해 일축압축시험을 수행하였다. Mpa또한 탄소섬유와 아라미드 섬유를 비교하기 위하여 0, 0.5, 1.0%로 증가시켜 실험하였다. 탄소섬유 및 아라미드 섬유 함유량이 증가함에 따라 일축압축강도가 증가하였고 이는 그라우트재 내에 섬유에 의한 가교작용이 일축압축강도를 증가시키는 경향을 확인하였다. 또한 아라미드 섬유로 보강된 그라우트재에서 탄소섬유로 보강된 그라우트재 보다 일축압축강도가 약 10%이상 증가된 것을 확인하였다.

Computer modeling to forecast accurate of efficiency parameters of different size of graphene platelet, carbon, and boron nitride nanotubes: A molecular dynamics simulation

  • Farazin, Ashkan;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.111-130
    • /
    • 2021
  • In the present work, an extensive study for predicting efficiency parameters (��i) of various simulated nanocomposites including Polymethyl methacrylate (PMMA) as matrix and different structures including various sizes of graphene platelets (GPLs), single, double, and multi-walled carbon nanotubes (SWCNTs-DWCNTs-MWCNTs), and single and double-walled boron nitride nanotubes (SWBNNTs-DWBNNTs) are investigated. It should be stated that GPLs, carbon and boron nitride nanotubes (CNTs, BNNT) with different chiralities (5, 0), (5, 5), (10, 0), and (10, 10) as reinforcements are considered. In this research, molecular dynamics (MDs) method with Materials studio software is applied to examine the mechanical properties (Young's modulus) of simulated nanocomposite boxes and calculate η1 of each nanocomposite boxes. Then, it is noteworthy that by changing length (6.252, 10.584, and 21.173 nm) and width (7.137, 10.515, and 19.936) of GPLs, ��1, ��2, and ��3 approximately becomes (0.101, 0.114, and 0.124), (1.15, 1.22, and 1.26), (1.04, 1.05, and 1.07) respectively. After that efficiency parameters of SWCNTs, DWCNTs, and MWCNTs are calculated and discussed separately. Finally efficiency parameters of SWBNNTs and DWBNNTs with different chiralities by PMMA as matrix are determined by MD and discussed separately. It is known that the accurate efficiency parameters helps a lot to calculate the properties of nanocomposite analytically. In particular, the obtained results from this research can be used for analytical work based on the extended rule of mixture (ERM) in bending, buckling and vibration analysis of structure in future study.

Secondary Neutron Dose in Carbon-ion Radiotherapy: Investigations in QST-NIRS

  • Yonai, Shunsuke;Matsumoto, Shinnosuke
    • Journal of Radiation Protection and Research
    • /
    • 제46권2호
    • /
    • pp.39-47
    • /
    • 2021
  • Background: The National Institutes for Quantum and Radiological Science and Technology-National Institute of Radiological Sciences (QST-NIRS) has continuously investigated the undesired radiation exposure in ion beam radiotherapy mainly in carbon-ion radiotherapy (CIRT). This review introduces our investigations on the secondary neutron dose in CIRT with the broad and scanning beam methods. Materials and Methods: The neutron ambient dose equivalents in CIRT are evaluated based on rem meter (WENDI-II) measurements. The out-of-field organ doses assuming prostate cancer and pediatric brain tumor treatments are also evaluated through the Monte Carlo simulation. This evaluation of the out-of-field dose includes contributions from secondary neutrons and secondary charged particles. Results and Discussion: The measurements of the neutron ambient dose equivalents at a 90#x00B0; angle to the beam axis in CIRT with the broad beam method show that the neutron dose per treatment dose in CIRT is lower than that in proton radiotherapy (PRT). For the scanning beam with the energy scanning technique, the neutron dose per treatment dose in CIRT is lower than that in PRT. Moreover, the out-of-field organ doses in CIRT decreased with distance to the target and are less than the lower bound in intensity-modulated radiotherapy (IMRT) shown in AAPM TG-158 (American Association of Physicists in Medicine Task Group). Conclusion: The evaluation of the out-of-field doses is important from the viewpoint of secondary cancer risk after radiotherapy. Secondary neutrons are the major source in CIRT, especially in the distant area from the target volume. However, the dose level in CIRT is similar or lower than that in PRT and IMRT, even if the contributions from all radiation species are included in the evaluation.

탄소섬유 강화 복합재료의 항공기용 PTO 샤프트 적용에 관한 연구 (A Study on the Application of Carbon Fiber Reinforced Plastics to PTO Shafts for Aircrafts)

  • 정광일;김원기;정재문;오재형;방윤혁;김성수
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.380-386
    • /
    • 2021
  • 본 연구에서는 탄소섬유 강화 복합재료를 적용하여 PTO 샤프트의 임계 속도를 향상시키는 연구를 진행하였다. 탄소섬유 강화 복합재료의 경우 전단 강도가 낮은 단점이 있어, 이를 보완하기 위해 티타늄-탄소섬유 강화 복합재료 하이브리드 구조로 설계하는 것을 제안하였다. PTO 샤프트에서 요구하는 최대 허용 토크, 임계 속도, 비틀림 고유진동수 기준을 충족시키는 최적의 구조를 설계하고 제작하였다. 제작한 PTO 샤프트의 성능 평가를 위해 진동 시험, 정적 비틀림 시험, 비틀림 내구성 시험이 수행되었고, 진동 시험에서 PTO 샤프트의 임계 속도는 20570 rpm로 티타늄 샤프트 대비하여 7.5% 향상된 것을 확인하였다. 또한 정적 비틀림 시험을 통해 PTO 샤프트의 최대 허용 토크가 2300 N·m로 해당 기준을 충족시키는 것을 확인하였다. 최종적으로 11.3~113 N·m 범위의 하중을 반복하는 비틀림 내구성 시험에서도 106 사이클 동안 피로파괴가 발생하지 않는 것으로 평가되었다.