DOI QR코드

DOI QR Code

Secondary Neutron Dose in Carbon-ion Radiotherapy: Investigations in QST-NIRS

  • Yonai, Shunsuke (Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology) ;
  • Matsumoto, Shinnosuke (Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology)
  • Received : 2020.11.14
  • Accepted : 2021.02.04
  • Published : 2021.06.30

Abstract

Background: The National Institutes for Quantum and Radiological Science and Technology-National Institute of Radiological Sciences (QST-NIRS) has continuously investigated the undesired radiation exposure in ion beam radiotherapy mainly in carbon-ion radiotherapy (CIRT). This review introduces our investigations on the secondary neutron dose in CIRT with the broad and scanning beam methods. Materials and Methods: The neutron ambient dose equivalents in CIRT are evaluated based on rem meter (WENDI-II) measurements. The out-of-field organ doses assuming prostate cancer and pediatric brain tumor treatments are also evaluated through the Monte Carlo simulation. This evaluation of the out-of-field dose includes contributions from secondary neutrons and secondary charged particles. Results and Discussion: The measurements of the neutron ambient dose equivalents at a 90#x00B0; angle to the beam axis in CIRT with the broad beam method show that the neutron dose per treatment dose in CIRT is lower than that in proton radiotherapy (PRT). For the scanning beam with the energy scanning technique, the neutron dose per treatment dose in CIRT is lower than that in PRT. Moreover, the out-of-field organ doses in CIRT decreased with distance to the target and are less than the lower bound in intensity-modulated radiotherapy (IMRT) shown in AAPM TG-158 (American Association of Physicists in Medicine Task Group). Conclusion: The evaluation of the out-of-field doses is important from the viewpoint of secondary cancer risk after radiotherapy. Secondary neutrons are the major source in CIRT, especially in the distant area from the target volume. However, the dose level in CIRT is similar or lower than that in PRT and IMRT, even if the contributions from all radiation species are included in the evaluation.

Keywords

References

  1. Tsujii H, Kamada T. A review of update clinical results of carbon ion radiotherapy. Jpn J Clin Oncol. 2012;42:670-685. https://doi.org/10.1093/jjco/hys104
  2. Durante M. New challenges in high-energy particle radiobiology. Br J Radiol. 2014;87:20130626. https://doi.org/10.1259/bjr.20130626
  3. Halperin EC. Particle therapy and treatment of cancer. Lancet Oncol. 2006;7:676-685. https://doi.org/10.1016/S1470-2045(06)70795-1
  4. Schulz-Ertner D, Tsujii H. Particle radiation therapy using proton and heavier ion beams. J Clin Oncol. 2007;25:953-964. https://doi.org/10.1200/JCO.2006.09.7816
  5. Pompos A, Durante M, Choy H. Heavy ions in cancer therapy. JAMA Oncol. 2016;2:1539-1540. https://doi.org/10.1001/jamaoncol.2016.2646
  6. Hall EJ. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys. 2006;65:1-7. https://doi.org/10.1016/j.ijrobp.2006.01.027
  7. Brenner DJ, Hall EJ. Secondary neutrons in clinical proton radiotherapy: a charged issue. Radiother Oncol. 2008;86:165-170. https://doi.org/10.1016/j.radonc.2007.12.003
  8. Newhauser WD, Durante M. Assessing the risk of second malignancies after modern radiotherapy. Nat Rev Cancer. 2011;11: 438-448. https://doi.org/10.1038/nrc3069
  9. Stokkevag CH, Schneider U, Muren LP, Newhauser W. Radiation-induced cancer risk predictions in proton and heavy ion radiotherapy. Phys Med. 2017;42:259-262. https://doi.org/10.1016/j.ejmp.2017.04.022
  10. National Council on Radiation Protection and Measurements. Second primary cancers and cardiovascular disease after radiation therapy (Report No. 170). Bethesda, MD: National Council on Radiation Protection and Measurements; 2011.
  11. Farah J, Mares V, Romero-Exposito M, Trinkl S, Domingo C, Dufek V, et al. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems. Med Phys. 2015;42:2572-2584. https://doi.org/10.1118/1.4916667
  12. Kry SF, Bednarz B, Howell RM, Dauer L, Followill D, Klein E, et al. AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy. Med Phys. 2017;44:e391-e429. https://doi.org/10.1002/mp.12462
  13. Yonai S, Matsufuji N, Kanai T, Matsui Y, Matsushita K, Yamashita H, et al. Measurement of neutron ambient dose equivalent in passive carbon-ion and proton radiotherapies. Med Phys. 2008; 35:4782-4792. https://doi.org/10.1118/1.2989019
  14. Yonai S, Kase Y, Matsufuji N, Kanai T, Nishio T, Namba M, et al. Measurement of absorbed dose, quality factor, and dose equivalent in water phantom outside of the irradiation field in passive carbon-ion and proton radiotherapies. Med Phys. 2010;37:4046-4055. https://doi.org/10.1118/1.3458721
  15. Yonai S, Matsufuji N, Namba M. Calculation of out-of-field dose distribution in carbon-ion radiotherapy by Monte Carlo simulation. Med Phys. 2012;39:5028-5039. https://doi.org/10.1118/1.4736823
  16. Yonai S, Furukawa T, Inaniwa T. Measurement of neutron ambient dose equivalent in carbon-ion radiotherapy with an active scanned delivery system. Radiat Prot Dosimetry. 2014;161:433-436. https://doi.org/10.1093/rpd/nct251
  17. Yonai S, Matsufuji N, Akahane K. Monte Carlo study of out-offield exposure in carbon-ion radiotherapy with a passive beam: organ doses in prostate cancer treatment. Phys Med. 2018;51: 48-55. https://doi.org/10.1016/j.ejmp.2018.04.391
  18. Matsumoto S, Yonai S, Bolch WE. Monte Carlo study of out-of-field exposure in carbon-ion radiotherapy: Organ doses in pediatric brain tumor treatment. Med Phys. 2019;46:5824-5832. https://doi.org/10.1002/mp.13864
  19. Matsumoto S, Yonai S. Evaluation of neutron ambient dose equivalent in carbon-ion radiotherapy with energy scanning. Radiat Prot Dosimetry. 2020;191:310-318. https://doi.org/10.1093/rpd/ncaa166
  20. Olsher RH, Hsu HH, Beverding A, Kleck JH, Casson WH, Vasilik DG, et al. WENDI: an improved neutron rem meter. Health Phys. 2000;79:170181.
  21. Schneider U, Agosteo S, Pedroni E, Besserer J. Secondary neutron dose during proton therapy using spot scanning. Int J Radiat Oncol Biol Phys. 2002;53:244-251. https://doi.org/10.1016/S0360-3016(01)02826-7
  22. Kawachi K, Kanai T, Matsuzawa H, Inada T. Three dimensional spot beam scanning method for proton conformation radiation therapy. Acta Radiol Suppl. 1983;364:81-88.
  23. Haberer T, Becher W, Schardt D, Kraft G. Magnetic scanning system for heavy ion therapy. Nucl Instrum Methods Phys Res A. 1993;330:296-305. https://doi.org/10.1016/0168-9002(93)91335-K
  24. Furukawa T, Hara Y, Mizushima K, Saotome N, Tansho R, Saraya Y, et al. Development of NIRS pencil beam scanning system for carbon ion radiotherapy. Nucl Instrum Methods Phys Res B. 2017;406:361-367. https://doi.org/10.1016/j.nimb.2016.10.029
  25. International Electrotechnical Commission. Medical electrical equipment - Part 2-64: Particular requirements for the basic safety and essential performance of light ion beam medical electrical equipment. Geneva, Switzerland: International Electrotechnical Commission; 2014. IEC 60601-2-64:2014.
  26. Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, Abe SI, et al. Features of particle and heavy ion transport code system (PHITS) version 3.02. J Nucl Sci Technol. 2018;55:684-690. https://doi.org/10.1080/00223131.2017.1419890
  27. Menzel HG, Clement C, DeLuca P. ICRP Publication 110: Realistic reference phantoms: an ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann ICRP. 2009;39: 1-164.
  28. Lee C, Lodwick D, Hurtado J, Pafundi D, Williams JL, Bolch WE. The UF family of reference hybrid phantoms for computational radiation dosimetry. Phys Med Biol. 2010;55:339-363. https://doi.org/10.1088/0031-9155/55/2/002
  29. International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP. 1991;21:1-201. https://doi.org/10.1016/0146-6453(91)90065-O