Providing various levels of difficulty of game play is one of important considerations in game development. In this paper, we propose a method for obtaining the challenges that will be placed on the track of an one-player car driving game. Herein challenges denote obstacles on the track, and the level of difficulty is represented by an estimated time needed for driving one lap of the track. In the proposed method, the problem for finding challenge placement is modeled as an IP(Integer Programming) one, and then LP relaxation and Simultaneous Annealing are employed to find a solution. To the experiment with the proposed method, we can obtain challenge placements to approximately meet given target driving times. Also, after practically driving on the track where those obtained challenges are being placed, it is seen that the average driving times approximate the target driving times of those challenge placements. Our method can allow game play with various levels of difficulty so that the users' interest and the level of immerse are expected to be raised.
Many games for English vocabulary learning, such as hangman, cross puzzle, matching, etc, have been developed which are of board-type or computer game-type. Most of these computer games are adapting strategy-style game plays so that there is a limit on giving the fun, a nature of games, to learners who do not like games of this style. In this paper, a system for memorizing new English words is proposed which is based on a single-player car racing game targeting youths and adults. In the game, the core of our system, a learner drives a car and obtains game points by colliding with English word texts like game items appearing on the track. The learner keeps on viewing English words being exposed on the track while driving, resulting in memorizing those words according to a learning principle stating viewing is memorization. To our experiment, the effect of memorizing English words by our car racing game is good, and the degree of satisfaction with our system as a English vocabulary learning tool is reasonably high. Also, previous word games are suitable for the memory enforcement of English words but our game can be used for the memorization of new words.
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.1009-1011
/
2021
게임에서 플레이어에게 시각적으로 제공되는 환경을 View라고 하는데, View의 전환만으로도 전혀 다른 게임의 경험이 가능하다. 본 논문에서는 car racing game에서 View의 전환에 따른 게임의 경험 차이를 비교하였다. 우리는 ARcore 라이브러리를 사용하여 AR car racing game을 구현하였고 virtual joystick을 사용한 Interaction 방법을 구현하였다. Top down view와 first person view의 차이점이 플레이어의 실감에 어떠한 영향을 미치는지 연구하기 위해 두 view을 구현하여 pilot study를 수행하였다.
A self-driving car is an autonomous vehicle capable of fulfilling the main transportation capabilities of a traditional car. It must be capable of sensing its environment and navigating without human input. In this paper, we design the agent that can simulate these self-driving cars and develop a prototype for it. To do this, we analyze the requirements for the self-driving car, and then the agent is designed to be suitable for traditional multi-agent system. The key point of the design is that agents move along the steering forces only. The prototype of the designed agent was implemented by using Unity 3D. From simulation results using the prototype, movements of the agents were very realistic. However, in the case of increasing the number of the agent the performance was seriously degraded, and so the alternatives of the problem were suggested.
Car crashes are the leading cause of death for persons of every age. Specially, human-related factor has been known to be the primary causal factor of such crashes than vehicle-and environmental-related factors. There are various studies to analyze driver's behavior and characteristics in driving for reducing the car crashes in many areas of car engineering, psychology, human factor, etc. However, there are almost no studies which analyze mainly the human errors in driving and estimate their probabilities in terms of human reliability analysis. This study estimates the probability of human error in driving, i.e. driver error probability. First, fifty driver errors are investigated through DBQ (Driver Behavior Questionnaire) revision and the error likelihoods in driving are collected which are judged by skillful drivers using revised DBQ. Next, these likelihoods are converted into driver error probabilities using the results that verbal probabilistic expressions are changed into quantitative probabilities. Using these probabilities we can improve the warning effects on drivers by indicating their driving error likelihoods quantitatively. We can also expect the reduction effects of car accident through controlling especially dangerous error groups which have higher probabilities. Like these, the results of this study can be used as the primary materials of safety education on drivers.
Objective of this study is to develop a 3D car navigation system that shows the driving direction to a destination through real-time 3-D panoramic views of the route. For the purpose, a new searching process was established to find the optimal driving direction based on the driver's current location and the real-time traffic situation and the TIP (tour into the picture) method was extended to implement a wide virtual environment. A virtual environment was built up by applying the extended TIP method to the panoramic images taken at a constant distance from a real road, and then, displayed 3-D navigation as clear as the real images. The car navigation system developed in this study provides the optimal driving direction and real-time traffic situation using 2-D navigation module and 3D navigation module.
A simulation game represented the real world and situation as a video games, In the first time, this simulation game primarily applied to military practice areas and then it's applied areas were extended to strategy, flighting, racing, life areas. In this paper, we developed the driving simulator that operate the 3-axis sensor attached driver's handle which could forward/backward moving, control of direction, and transmit of gear in the virtual space. For more the realities of the situation and accuracy of the location and speed, we adopted the 3-axis sensing informations, Unreal engine4' and Blueprint.
The Grand-Touring is a game motion simulator that simulates the race-car driving motion with three hydraulic cylinders which connect the platform and base in parallel. Its motion control system consists of the PC-based main controller and micro-controller based sub-controller. The former one process the dynamic image of race-car in response to the driver's action and computes the reference command for each cylinder and the latter one is designed for the tracking control of hydraulic cylinder and interfacing the auxiliary signals between various sensors/actuator and main controller. In this research, we developed the sub-controller that implements the required functions of Grand-Touring and prove the overall performance with experiments.
The decision-making by agents in games is commonly based on reinforcement learning. To improve the quality of agents, it is necessary to solve the problems of the time and state space that are required for learning. Such problems can be solved by Macro-Actions, which are defined and executed by a sequence of primitive actions. In this line of research, the learning time is reduced by cutting down the number of policy decisions by agents. Macro-Actions were originally defined as combinations of the same primitive actions. Based on studies that showed the generation of Macro-Actions by learning, Macro-Actions are now thought to consist of diverse kinds of primitive actions. However an enormous amount of learning time and state space are required to generate Macro-Actions. To resolve these issues, we can apply insights from studies on the learning of tasks through Programming by Demonstration (PbD) to generate Macro-Actions that reduce the learning time and state space. In this paper, we propose a method to define and execute Macro-Actions. Macro-Actions are learned from a human subject via PbD and a policy is learned by reinforcement learning. In an experiment, the proposed method was applied to a car simulation to verify the scalability of the proposed method. Data was collected from the driving control of a human subject, and then the Macro-Actions that are required for running a car were generated. Furthermore, the policy that is necessary for driving on a track was learned. The acquisition of Macro-Actions by PbD reduced the driving time by about 16% compared to the case in which Macro-Actions were directly defined by a human subject. In addition, the learning time was also reduced by a faster convergence of the optimum policies.
Park, Min Hee;Kwon, Mahn Woo;Kim, Chee Yong;Nah, Ken
Journal of Korea Multimedia Society
/
v.23
no.9
/
pp.1219-1228
/
2020
In this study, the factors affecting the acceptance intention for level 4-5 of autonomous vehicles were investigated by applying TAM(Technology Acceptance Model). To this end, 332 ordinary persons interested in autonomous vehicle and experienced in driving car were analyzed by using SEM(Structural Equation Modeling). The results showed that self-efficacy and personal innovation had a positive effect on perceived usefulness. On the other hand personal innovation has been shown to have a negative effect on perceived usefulness. Perceived ease of use has a positive effect on perceived usefulness, perceived ease of use and perceived usefulness has a positive effect on acceptance intention. Safety and Privacy has been shown to have a positive effect on trust, trust has a positive effect on acceptance intention. Lastly, autonomous vehicles have a higher impact on their 20s and 30s. The result of this study is expected to be a very useful basic research for the development of target autonomous vehicles, the selection of targets, the direction of corporate marketing strategies, and the preparation of government policies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.