DOI QR코드

DOI QR Code

A Method for Challenge Placement to Set the Level of Difficulty in a Car Driving Game

자동차 주행 게임에서의 난이도 설정을 위한 도전 배치 방법

  • Kim, Sangchul (Div. of Computer Science and Electronic System Engineering, Hankuk University of Foreign Studies) ;
  • Park, Dosaeng (Div. of Computer Science and Electronic System Engineering, Hankuk University of Foreign Studies)
  • 김상철 (한국외국어대학교 컴퓨터 및 전자시스템 공학부) ;
  • 박도생 (한국외국어대학교 컴퓨터 및 전자시스템 공학부)
  • Received : 2015.07.10
  • Accepted : 2015.08.17
  • Published : 2015.08.20

Abstract

Providing various levels of difficulty of game play is one of important considerations in game development. In this paper, we propose a method for obtaining the challenges that will be placed on the track of an one-player car driving game. Herein challenges denote obstacles on the track, and the level of difficulty is represented by an estimated time needed for driving one lap of the track. In the proposed method, the problem for finding challenge placement is modeled as an IP(Integer Programming) one, and then LP relaxation and Simultaneous Annealing are employed to find a solution. To the experiment with the proposed method, we can obtain challenge placements to approximately meet given target driving times. Also, after practically driving on the track where those obtained challenges are being placed, it is seen that the average driving times approximate the target driving times of those challenge placements. Our method can allow game play with various levels of difficulty so that the users' interest and the level of immerse are expected to be raised.

다양한 수준의 게임 난이도를 사용자에게 제공하는 것은 게임 개발 시 주요 고려 사항 중 하나이다. 본 논문에서는 1인용 자동차 주행 게임에서 주어진 난이도를 갖도록 주행 트랙에 도전들을 배치하는 방법을 제안한다. 여기서 도전은 자동차 주행을 방해하는 장애물을 말하고, 게임 난이도는 트랙 한 바퀴를 도는데 필요한 예상 주행 시간으로 나타낼 수 있다. 제안된 방법에서는 도전 배치 문제를 IP(Integer Programming) 문제로 모델링한 후, LP 완화 및 시뮬레이티드 어닐링 방법으로 해를 구한다. 실험 결과, 주어진 목표 시간에 맞는 주행 시간을 갖는 도전 배치를 구할 수 있었다. 이들 도전 배치를 트랙에 적용한 후 시험 주행해 봄으로써, 실제 주행 시간은 평균적으로 해당 도전 배치의 목표 시간과 일치함을 보였다. 제안된 방법은 사용자에게 다양한 난이도의 게임 플레이를 제공함으로써, 게임의 흥미와 몰입감을 높일 것이다.

Keywords

References

  1. Fausto Mourato, Manuel Prospero dos Santos, Fernando Birra, "Automatic Level Generation for Platform Videogames Using Genetic Algorithms", Proceeding of the 8th International Conference on Advances in Computer Entertainment Technology, 2011, pp.1-8.
  2. P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma. "Difficulty Scaling of Game AI", In Proceedings of the 5th International Conference on Intelligent Games and Simulation (GAME-ON 2004), 2004, pp.33-37.
  3. R. Hunicke and V. Chapman. "AI for Dynamic Difficulty Adjustment in Games", In Challenges in Game Artificial Intelligence AAAI Workshop, 2004, pp.91-96.
  4. Robin Hunicke, "The Case for Dynamic Difficulty Adjustment in Games". Proceedings of the ACM SIGCHI International Conference on Advances in computer entertainment technology, 2005, pp.429-433.
  5. K. Compton, M. Mateas, "Procedural Level Design for Platform Games", In Proceedings of the Artificial Intelligence and Interactive Digital Entertainment International Conference (AIIDE), 2006, pp.109-111.
  6. Nirach Watcharasatharpornpong, Vishnu Kotrajaras, "Automatic Level Difficulty Adjustment in Platform Games Using Genetic Algorithm Based Methodology", http://www.researchgate.net/[DOI:10.5176/978-981-08-3190-5_482], 2010.
  7. S. Kim and D. Park, "Integer Programmingbased Generation of Difficulty Level for a Racing Game", Proceeding of ICEC, 2015 (to be published).
  8. G. Smith, M. Mateas, J. Whitehead, M. Treanor, "Rhythm-based Level Generation for 2D Platformers", In Proceedings of the 4th International Conference on Foundations of Digital Game, 2009, pp.175-182.
  9. P. Mawhorter, M. Mateas, "Procedural Level Generation Using Occupancy-regulated Extension", IEEE Conference on Computational Intelligence and Games, 2010, pp.351-358.
  10. N. Shaker, G. Yannakakis, and J. Togelius. Towards, "Towards Automatic Personalized Content Generation for Platform Games", In Proceedings of Artificial Intelligence and Interactive Digital Entertainment (AIIDE'10), 2010, pp.63-68.
  11. Olana Missura and Thomas Gartner, "Player Modeling for Intelligent Difficulty Adjustment," Proceedings of the 12th International Conference on Discovery Science, 2009, pp.197-211.
  12. Simulated Annealing, Https://en.wikipedia.org/wiki/Simulated_annealing
  13. S. Kirkpatrick, et. al, "Optimization by Simulated Annealing", Science. 220, 1983, pp.671-679. https://doi.org/10.1126/science.220.4598.671
  14. S. Kim, H. Park, "A Single-Player Car Driving Game-based English Vocabulary Learning System", Journal of Korea Game Society. 12(5), 2015, pp.95-104.
  15. Ock-Tae Kim, "Effectiveness of G-Learning Math Class in Increase of Math Achievement of K-5 Students in USA", Journal of Korea Game Society. 11(6), 2011, pp.201-212.