• Title/Summary/Keyword: Capture process

Search Result 693, Processing Time 0.023 seconds

Performance Analysis of Upgrading Process with Amine-Based CO2 Capture Pilot Plant

  • Kwak, No-Sang;Lee, Junghyun;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This study applied upgrades to the processes of a 10 MW wet amine $CO_2$ capture pilot plant and conducted performance evaluation. The 10 MW $CO_2$ Capture Pilot Plant is a facility that applies 1/50 of the combustion flue gas produced from a 500 MW coal-fired power plant, and is capable of capturing up to 200 tons of $CO_2$. This study aimed to quantitatively measure efficiency improvements of post-combustion $CO_2$ capture facilities resulting from process upgrades to propose reliable data for the first time in Korea. The key components of the process upgrades involve absorber intercooling, lean/rich amine exchanger efficiency improvements, reboiler steam TVR (Thermal Vapor Recompression), and lean amine MVR (Mechanical Vapor Recompression). The components were sequentially applied to test the energy reduction effect of each component. In addition, the performance evaluation was conducted with the absorber $CO_2$ removal efficiency maintained at the performance evaluation standard value proposed by the IEA-GHG ($CO_2$ removal rate: 90%). The absorbent used in the study was the highly efficient KoSol-5 that was developed by KEPCO (Korea Electric Power Corporation). From the performance evaluation results, it was found that the steam consumption (regeneration energy) for the regeneration of the absorbent decreased by $0.38GJ/tonCO_2$ after applying the process upgrades: from $2.93GJ/ton\;CO_2$ to $2.55GJ/tonCO_2$. This study confirmed the excellent performance of the post-combustion wet $CO_2$ capture process developed by KEPCO Research Institute (KEPRI) within KEPCO, and the process upgrades validated in this study are expected to substantially reduce $CO_2$ capture costs when applied in demonstration $CO_2$ capture plants.

Minimization of Energy Consumption for Amine Based CO2 Capture Process by Process Modification

  • Sultan, Haider;Bhatti, Umair H.;Cho, Jin Soo;Park, Sung Youl;Baek, Il Hyun;Nam, Sungchan
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.13-18
    • /
    • 2019
  • The high energy penalty in amine-based post-combustion CO2 capture process is hampering its industrial scale application. An advanced process is designed by intensive heat integration within the conventional process to reduce the stripper duty. The study presents the technical feasibility for stripper duty reduction by intensive heat integration in CO2 capture process. A rigorous rate-based model has been used in Aspen Plus® to simulate conventional and advanced process for a 300 MW coal-based power plant. Several design and operational parameters like split ratio, stripper inter-heater location and flowrate were studied to find the optimum values. The results show that advanced configuration with heat integration can reduces the stripper heat by 14%.

A study on motion capture animation process : Focusing on short animation film 'Drip' (모션 캡처 애니메이션 프로세스 연구 : 단편 애니메이션 'Drip'을 중심으로)

  • kim, Jisoo
    • Journal of Korea Game Society
    • /
    • v.16 no.4
    • /
    • pp.97-104
    • /
    • 2016
  • This study suggests a technique to implement the production of animation by blending between key frame animation and motion capture animation through short animation 'Drip.' It reduced the time taken to produce an animation by not only enabling efficient process management through mutual organic connection but also conducting a process of mutually making up for weak points of key frame animation and motion capture animation. Through this, it was intended to be helpful in efficient animation production by overcoming the limitation of key frame animation and motion capture animation and perceiving and applying a complex process.

Onboard CO2 Capture Process Design using Rigorous Rate-based Model

  • Jung, Jongyeon;Seo, Yutaek
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.168-180
    • /
    • 2022
  • The IMO has decided to proceed with the early introduction of EEDI Phase 3, a CO2 emission regulation to prevent global warming. Measures to reduce CO2 emissions for ships that can be applied immediately are required to achieve CO2 reduction. We set six different CO2 emission scenarios according to the type of ship and fuel, and designed a monoethanolamine-based CO2 capture process for ships using a rate-based model of Aspen Plus v10. The simulation model using Aspen Plus was validated using pilot plant operation data. A ship inevitably tilts during operation, and the performance of a tilted column decreases as its height increases. When configuring the conventional CO2 capture process, we considered that the required column heights were so high that performance degradation was unavoidable when the process was implemented on a ship. We applied a parallel column concept to lower the column height and to enable easy installation and operation on a ship. Simulations of the parallel column confirmed that the required column height was lowered to less than 3 TEU (7.8 m).

Carbon Dioxide Separation by Direct Air Capture (직접 공기 포집에 의한 이산화탄소 포집)

  • Yeon Ki Hong
    • Journal of Institute of Convergence Technology
    • /
    • v.13 no.1
    • /
    • pp.13-17
    • /
    • 2023
  • Direct air capture (DAC) refers to the process of permanently removing CO2 from the atmosphere by capturing CO2 that has been emitted into the atmosphere from the past to the present directly from the atmosphere. DAC is a process that captures CO2 that exists at 400 ppm in the atmosphere, so it has the problem of requiring a significant amount of air and high energy compared to CO2 capture from a point source such as exhaust gas from a coal-fired power plant. In this study, we aim to introduce the performance, characteristics, and processes of absorbents that can be applied to DAC, focusing on the DAC process using absorbents developed to date, and present challenges that must be overcome in future DAC technology development.

Process Improvement and Evaluation of 0.1 MW-scale Test Bed using Amine Solvent for Post-combustion CO2 Capture (0.1 MW급 연소후 습식아민 CO2 포집 Test Bed 공정개선효과 검증)

  • Park, Jong Min;Cho, Seong Pill;Lim, Ta Young;Lee, Young ill
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.103-108
    • /
    • 2016
  • Carbon Capture and Storage technologies are recognized as key solution to meet greenhouse gas emission standards to avoid climate change. Although MEA (monoethanolamine) is an effective amine solvent in $CO_2$ capture process, the application is limited by high energy consumption, i.e., reduction of 10% of efficiency of coal-fired power plants. Therefore the development of new solvent and improvement of $CO_2$ capture process are positively necessary. In this study, improvement of $CO_2$ capture process was investigated and applied to Test Bed for reducing energy consumption. Previously reported technologies were examined and prospective methods were determined by simulation. Among the prospective methods, four applicable methods were selected for applying to 0.1 MW Test Bed, such as change of packing material in absorption column, installing the Intercooling System to absorption column, installing Rich Amine Heater and remodeling of Amines Heat Exchanger. After the improvement construction of 0.1 MW Test Bed, the effects of each suggested method were evaluated by experimental results.

Real-time Markerless Facial Motion Capture of Personalized 3D Real Human Research

  • Hou, Zheng-Dong;Kim, Ki-Hong;Lee, David-Junesok;Zhang, Gao-He
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.129-135
    • /
    • 2022
  • Real human digital models appear more and more frequently in VR/AR application scenarios, in which real-time markerless face capture animation of personalized virtual human faces is an important research topic. The traditional way to achieve personalized real human facial animation requires multiple mature animation staff, and in practice, the complex process and difficult technology may bring obstacles to inexperienced users. This paper proposes a new process to solve this kind of work, which has the advantages of low cost and less time than the traditional production method. For the personalized real human face model obtained by 3D reconstruction technology, first, use R3ds Wrap to topology the model, then use Avatary to make 52 Blend-Shape model files suitable for AR-Kit, and finally realize real-time markerless face capture 3D real human on the UE4 platform facial motion capture, this study makes rational use of the advantages of software and proposes a more efficient workflow for real-time markerless facial motion capture of personalized 3D real human models, The process ideas proposed in this paper can be helpful for other scholars who study this kind of work.

Improvement of Post-combustion CO2 Capture Process using Mechanical Vapor Recompression (기기적 증기 재압축 시스템을 적용한 연소 후 이산화탄소 포집공정 개선 연구)

  • Jeong, Yeong Su;Jung, Jaeheum;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In order to reduce the anthropogenic emission of greenhouse gases, CCS technology has emerged as the most promising and practical solution. Among CCS technology, post-combustion $CO_2$ capture is known as the most mature and effective process to remove $CO_2$ from power plant, but its energy consumption for chemical solvent regeneration still remains as an obstacle for commercialization. In this study, a process alternative integrating $CO_2$ capture with compression process is proposed which not only reduces the amount of thermal energy required for solvent regeneration but also produces $CO_2$ at an elevated pressure.

CO2 Capture from the Hydrogen Production Processes (수소생산 공정에서의 이산화탄소 포집)

  • Yeon Ki, Hong
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.19-23
    • /
    • 2022
  • Interest in hydrogen production to respond to climate change is increasing. Until now, hydrogen has been mainly produced through the SMR (Steam Methane Reforming) process using natural gas. A large amount of CO2 is emitted in the hydrogen production process through SMR, and the gas flow including CO2 generated in the SMR process has different characteristics for each emission source, so it is important to apply a suitable CO2 capture process. In the case of PSA tail gas or synthesis gas, the applicability of an amine-based process has been confirmed or demonstrated close to a commercial level. However, in the case of the flue gas generated from the reformer, it is still difficult to apply the conventional amine-based process because the partial pressure of CO2 is relatively low. Energy-saving innovative absorbents such as phase separation absorbents can be a solution to these difficulties.

Simulation and Three-dimensional Animation of Skipjack Behavior as Capture Process during Purse Seining

  • Kim, Yong-Hae;Park, Myeong-Chul;Ha, Suk-Wun
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.113-123
    • /
    • 2008
  • We modeled fish school movements as a capture process in relation to the purse seine method using the three steps of the stimulus-response process (i.e., input stimuli, central decision-making and output reaction). Input stimuli of the model were categorized as either physical stimuli such as visual stimulus, sound stimulus, water flow, and weather or as biological stimuli such as species and size, swimming performance, sensual sensitivity, and presence of prey or predators. The output process determining the spatial orientation of the fish school for 3-D movements was based on swimming speed and angular change in the fish response, and these movements were animated as the relative geometry between the fish school and the purse seine. Simulations were carried out for skipjack tuna (Katsuwonus pelamis) schools reacting to a pelagic purse seine in the southwest Pacific Ocean. Simulation results showed that escape ratios varied from 20 to 70% by the relevant ranges in the stimulus-response thresholds, swimming speeds, and angular changes of fish schools were similar to those observed in the field. Therefore, with knowledge of relevant parameters, this model can be used to predict capture and escape probabilities of purse seine operations for different fish species or conditions.