• Title/Summary/Keyword: Capture Simulation

Search Result 405, Processing Time 0.023 seconds

Analysis of the Bogus Routing Information Attacks in Sensor Networks (센서 네트워크에서 AODV 라우팅 정보 변조공격에 대한 분석)

  • Lee, Myung-Jin;Kim, Mi-Hui;Chae, Ki-Joon;Kim, Ho-Won
    • The KIPS Transactions:PartC
    • /
    • v.14C no.3 s.113
    • /
    • pp.229-238
    • /
    • 2007
  • Sensor networks consist of many tiny sensor nodes that collaborate among themselves to collect, process, analyze, and disseminate data. In sensor networks, sensor nodes are typically powered by batteries, and have limited computing resources. Moreover, the redeployment of nodes by energy exhaustion or their movement makes network topology change dynamically. These features incur problems that do not appear in traditional, wired networks. Security in sensor networks is challenging problem due to the nature of wireless communication and the lack of resources. Several efforts are underway to provide security services in sensor networks, but most of them are preventive approaches based on cryptography. However, sensor nodes are extremely vulnerable to capture or key compromise. To ensure the security of the network, it is critical to develop suity mechanisms that can survive malicious attacks from "insiders" who have access to the keying materials or the full control of some nodes. In order to protect against insider attacks, it is necessary to understand how an insider can attack a sensor network. Several attacks have been discussed in the literature. However, insider attacks in general have not been thoroughly studied and verified. In this paper, we study the insider attacks against routing protocols in sensor networks using the Ad-hoc On-Demand Distance Vector (AODV) protocol. We identify the goals of attack, and then study how to achieve these goals by modifying of the routing messages. Finally, with the simulation we study how an attacker affects the sensor networks. After we understand the features of inside attacker, we propose a detect mechanism using hop count information.

The Stability Assessment of an Aquifer in Pohang Yeongil Bay due to CO2 Injection (이산화탄소 주입에 따른 포항 영일만 대수층 안정성평가)

  • Kim, Nam-Hoon;Jung, Hyung-Sik;Kim, Gvan-Dek;Jeong, Hoonyoung;Shin, Hyundon;Kwon, Yi-Kyun;Choe, Jonggeun
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.183-192
    • /
    • 2018
  • It is imperative to inject carbon dioxide($CO_2$) into an aquifer for alleviating the emission of $CO_2$. However, faults in the aquifer can be reactivated due to pressure increasement. Analyses of pressure change of the aquifer is necessary to prevent the fault reactivation. In this research, we assess the stability of an aquifer in Pohang Yeongil bay by investigating the pressure variation of faults EF1 and EF2. Two scenarios, which repeat $CO_2$ injection and suspension during two years, are simulated. Each scenario includes cases of injection rates of 20, 40, and 100 tons/day. In addition, we analyze planned and predicted injection rates for each case. In case of 20 tons/day, the maximum pressure of faults is 65% of the reactivation pressure. Even if daily injection rates are increased to 40 and 100 tons/day, the maximum pressures are 71% and 80% of the reactivation pressures, respectively. For 20 and 40 tons/day cases, planned injection rates almost accord with predicted injection rates during whole simulation period. On the other hand, predicted injection rates are smaller than planned injection rates for the 100 tons/day case due to bottom-hole pressure limit of the injection well.

Design of NePID using Anomaly Traffic Analysis and Fuzzy Cognitive Maps (비정상 트래픽 분석과 퍼지인식도를 이용한 NePID 설계)

  • Kim, Hyeock-Jin;Ryu, Sang-Ryul;Lee, Se-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.811-817
    • /
    • 2009
  • The rapid growth of network based IT systems has resulted in continuous research of security issues. Probe intrusion detection is an area of increasing concerns in the internet community. Recently, a number of probe intrusion detection schemes have been proposed based on various technologies. However, the techniques, which have been applied in many systems, are useful only for the existing patterns of probe intrusion. They can not detect new patterns of probe intrusion. Therefore, it is necessary to develop a new Probe Intrusion Detection technology that can find new patterns of probe intrusion. In this paper, we proposed a new network based probe intrusion detector(NePID) using anomaly traffic analysis and fuzzy cognitive maps that can detect intrusion by the denial of services attack detection method utilizing the packet analyses. The probe intrusion detection using fuzzy cognitive maps capture and analyze the packet information to detect syn flooding attack. Using the result of the analysis of decision module, which adopts the fuzzy cognitive maps, the decision module measures the degree of risk of denial of service attack and trains the response module to deal with attacks. For the performance evaluation, the "IDS Evaluation Data Set" created by MIT was used. From the simulation we obtained the max-average true positive rate of 97.094% and the max-average false negative rate of 2.936%. The true positive error rate of the NePID is similar to that of Bernhard's true positive error rate.

Interface Capturing for Immiscible Two-phase Fluid Flows by THINC Method (THINC법을 이용한 비혼합 혼상류의 경계면 추적)

  • Lee, Kwang-Ho;Kim, Kyu-Han;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.277-286
    • /
    • 2012
  • In the numerical simulation of wave fields using a multi-phase flow model that considers simultaneous flows of materials with different states such as gas, liquid and solid, there is need of an accurate representation of the interface separating the fluids. We adopted an algebraic interface capturing method called tangent of hyperbola for interface-capturing(THINC) method for the capture of the free-surface in computations of multi-phase flow simulations instead of geometrical-type methods such a volume of fluid(VOF) method. The THINC method uses a hyperbolic tangent functions to represent the surface, and compute the numerical flux for the fluid fraction functions. One of the remarkable advantages of THINC method is its easy applicability to incorporate various numerical codes based on Navier-Stokes solver because it does not require the extra geometric reconstruction needed in most of VOF-type methods. Several tests were carried out in order to investigate the advection of interfaces and to verify the applicability of the THINC method to wave fields based on the one-field model for immiscible two-phase flows (TWOPM). The numerical results revealed that the THINC method is able to track the interface between air and water separating the fluids although its algorithm is fairly simple.

Enhanced Weighted Directional Demosaicking using Edge Indicator (에지 지시자를 이용한 향상된 방향 가중치 디모자이킹 알고리듬)

  • Ryu, Ji-Man;Yang, Si-Young;Lim, Tae-Hwan;Jung, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.265-279
    • /
    • 2010
  • A color image requires at least three color channels to obtain the full color image. However the image sensor obtains only the intensity of the brightness, that is, three image sensors are required for every pixel to capture the full color image. Since the image sensor is quiet expensive, most of digital still cameras adopt single image sensor array with color filter array (CFA) to reduce the size and the cost. Since the image obtained using single sensor array has only one color component per pixel, we need to reconstruct the missing two color components to obtain the full color image. We call this process as color filter interpolation or demosaicking. In this paper, demosaicking algorithm composed of two large step is proposed. Proposed algorithm is combined with several different algorithms such as Edge-directed demosaicking, Second-order gradients as correction terms, Smooth hue transition Interpolation, etc. The simulation results show that the proposed algorithm performs much better than the state-of-the-art demosaicking algorithms in terms of both subjective and objective qualities.

Development and assessment of framework for selecting multi-GCMs considering Asia monsoon characteristics (아시아 몬순특성을 고려한 다중 GCMs 선정방법 개발 및 평가)

  • Kim, Jeong-Bae;Kim, Jin-Hoon;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.647-660
    • /
    • 2020
  • The objectives of this study are to develop a framework for selecting multi-GCMs considering Asia monsoon characteristics and assess it's applicability. 12 climate variables related to monsoon climates are selected for GCM selection. The framework for selecting multi-GCMs includes the evaluation matrix of GCM performance based on their capability to simulate historical climate features. The climatological patterns of 12 variables derived from individual GCM over the summer monsoon season during the past period (1976-2005) and they are compared against observations to evaluate GCM performance. For objective evaluation, a rigorous scoring rule is implemented by comparing the GCM performance based on the results of statistics between historical simulation derived from individual GCM and observations. Finally, appropriate 5 GCMs (NorESM1-M, bcc-csm1-m, CNRM-CM5, CMCC-CMS, and CanESM2) are selected in consideration of the ranking of GCM and precipitation performance of each GCM. The selected 5 GCMs are compared with the historical observations in terms of monsoon season and monthly mean to validate their applicability. The 5 GCMs well capture the observational climate characteristics of Asia for the 12 climate variables also they reduce the bias between the entire GCM simulations and the observational data. This study demonstrates that it is necessary to consider various climate variables for GCM selection and, the method introduced in this study can be used to select more reliable climate change scenarios for climate change assessment in the Asia region.

Energy Efficient Distributed Intrusion Detection Architecture using mHEED on Sensor Networks (센서 네트워크에서 mHEED를 이용한 에너지 효율적인 분산 침입탐지 구조)

  • Kim, Mi-Hui;Kim, Ji-Sun;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.151-164
    • /
    • 2009
  • The importance of sensor networks as a base of ubiquitous computing realization is being highlighted, and espicially the security is recognized as an important research isuue, because of their characteristics.Several efforts are underway to provide security services in sensor networks, but most of them are preventive approaches based on cryptography. However, sensor nodes are extremely vulnerable to capture or key compromise. To ensure the security of the network, it is critical to develop security Intrusion Detection System (IDS) that can survive malicious attacks from "insiders" who have access to keying materials or the full control of some nodes, taking their charateristics into consideration. In this perper, we design a distributed and adaptive IDS architecture on sensor networks, respecting both of energy efficiency and IDS efficiency. Utilizing a modified HEED algorithm, a clustering algorithm, distributed IDS nodes (dIDS) are selected according to node's residual energy and degree. Then the monitoring results of dIDSswith detection codes are transferred to dIDSs in next round, in order to perform consecutive and integrated IDS process and urgent report are sent through high priority messages. With the simulation we show that the superiorities of our architecture in the the efficiency, overhead, and detection capability view, in comparison with a recent existent research, adaptive IDS.

Evaluation of Modified Soil-Plant-Atmosphere Model (mSPA) to Simulate Net Ecosystem Carbon Exchange Over a Deciduous Forest at Gwangneung in 2006 (2006년 광릉 활엽수림에서 순 생태계 탄소 교환량의 모의에 대한 modified Soil-Plant-Atmosphere (mSPA) 모델의 평가)

  • Lee, Young-Hee;Lim, Hee-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.3
    • /
    • pp.87-99
    • /
    • 2009
  • We evaluated modified Soil-Plant-Atmosphere model's performance to simulate the seasonal variation of net ecosystem exchange (NEE) of carbon and examined the critical controlling mechanism on carbon exchange using the model over a deciduous forest at Gwangnung in 2006. The modified Soil-Plant-Atmosphere (mSPA) model was calibrated to capture the mean NEE during the daytime (1000-1400 LST) and used to simulate gross primary productivity (GPP). Ecosystem respiration ($R_e$) has been estimated using an empirical formula developed at this site. The simulation results indicated that the daytime mean stomatal conductance was highly correlated with daily insolation in the summer. Low stomatal conductance in high insolation occurred on the days with low temperature rather than with high vapor pressure deficit. It suggests that the forest rarely experienced water stress in the summer of 2006. The model captured the observed bimodal seasonal variation with a mid-season depression of carbon uptake. The model estimates of annual GPP, $R_e$ and NEE were $964\;gC\;m^{-2}\;yr^{-1}$, $733\;gC\;m^{-2}\;yr^{-1}$, and $-231\;gCm\;^{-2}\;yr^{-1}$, respectively. Compared to the observed annual NEE, the modeled estimates showed more carbon uptake by about $140\;gC\;m^{-2}\;yr^{-1}$. The uncertainty of the estimate of annual NEE in a complex terrain is discussed.

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.

Exergy Analysis of Cryogenic Air Separation Unit for Oxy-fuel Combustion (순산소 연소를 위한 초저온 공기분리장치의 엑서지 분석)

  • Choi, Hyeung-chul;Moon, Hung-man;Cho, Jung-ho
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • In order to solve the global warming and reduce greenhouse gas emissions, $CO_2$ capture technology was developed by applying oxy-fuel combustion. But there has been such a problem that its economic efficiency is low due to the high price of oxygen gases. ASU is known to be most suitable method to produce large quantity of oxygen, to reduce the oxygen production cost, the efficiency of ASU need to be improved. To improve the efficiency of ASU, exergy analysis can be used. The exergy analysis provides the information of used energy in the process, the location and size of exergy destruction. In this study, the exergy analysis was used for process developing and optimization of large scale ASU. The process simulation of ASU was conducted, the results were used to calculate the exergy. As a result, to reduce the exergy loss in the cold box of ASU, a lower operating pressure process was suggested. It was confirmed the importance of heat leak and heat loss reduction of cold box. Also, the unit process of ASU which requires thermal integration was confirmed.