DOI QR코드

DOI QR Code

Development and assessment of framework for selecting multi-GCMs considering Asia monsoon characteristics

아시아 몬순특성을 고려한 다중 GCMs 선정방법 개발 및 평가

  • Kim, Jeong-Bae (Department of Civil & Environmental Engineering, Sejong University) ;
  • Kim, Jin-Hoon (Hangang Hydro Power Site, Korea Hydro & Nuclear Power Co., LTD) ;
  • Bae, Deg-Hyo (Department of Civil & Environmental Engineering, Sejong University)
  • 김정배 (세종대학교 건설환경공학과) ;
  • 김진훈 (한국수력원자력(주) 한강수력본부) ;
  • 배덕효 (세종대학교 건설환경공학과)
  • Received : 2020.06.12
  • Accepted : 2020.07.19
  • Published : 2020.09.30

Abstract

The objectives of this study are to develop a framework for selecting multi-GCMs considering Asia monsoon characteristics and assess it's applicability. 12 climate variables related to monsoon climates are selected for GCM selection. The framework for selecting multi-GCMs includes the evaluation matrix of GCM performance based on their capability to simulate historical climate features. The climatological patterns of 12 variables derived from individual GCM over the summer monsoon season during the past period (1976-2005) and they are compared against observations to evaluate GCM performance. For objective evaluation, a rigorous scoring rule is implemented by comparing the GCM performance based on the results of statistics between historical simulation derived from individual GCM and observations. Finally, appropriate 5 GCMs (NorESM1-M, bcc-csm1-m, CNRM-CM5, CMCC-CMS, and CanESM2) are selected in consideration of the ranking of GCM and precipitation performance of each GCM. The selected 5 GCMs are compared with the historical observations in terms of monsoon season and monthly mean to validate their applicability. The 5 GCMs well capture the observational climate characteristics of Asia for the 12 climate variables also they reduce the bias between the entire GCM simulations and the observational data. This study demonstrates that it is necessary to consider various climate variables for GCM selection and, the method introduced in this study can be used to select more reliable climate change scenarios for climate change assessment in the Asia region.

본 연구에서는 아시아 몬순특성을 고려한 전지구모형(General Circulation model, GCM) 선정방법을 개발하고 방법의 적정성을 평가하였다. 몬순기후와 연관된 12개의 기후변수를 선정하였으며, GCM의 과거 기후재현성을 기준으로 모의성능 평가 매트릭스 및 평가체계를 구성하였다. 19개 GCM으로부터 아시아 몬순지역 및 과거(1976 ~ 2005년) 몬순기간에 대한 12개 기후변수를 관측자료와 비교하여 GCM의 기후모의 성능을 평가하였다. GCM의 평가순위 및 강수량 모의성능을 고려하여 적정 5개 GCM (NorESM1-M, bcc-csm1-1-m, CNRM-CM5, CMCC-CMS, CanESM2)을 선정하였다. 과거 몬순계절 및 월 평균 기후에 대하여 선정된 GCM의 기후재현성을 검증하였다. 선정된 5개 GCM은 12개 기후변수에 대한 아시아 지역의 관측 기후특성을 잘 재현하였으며, 전체 GCM을 사용하는 경우에 비해 모의값과 관측값 간의 오차를 줄일 수 있는 것으로 확인되었다.

Keywords

References

  1. Adam, J.C., and Lettenmaier, D.P. (2003). "Adjustment of global gridded precipitation for systematic bias." Journal of Geophysical Research, Vol. 108, No. D9, pp. 1-14.
  2. Adam, J.C., Clark, E.A., Lettenmaier, D.P., and Wood, E.F. (2006). "Correction of global precipitation products for orographic effects." Journal of Climate, Vol. 19, No. 1, pp. 15-38. https://doi.org/10.1175/JCLI3604.1
  3. Bae, D.H., Jung, I.-W., and Chang, H.J. (2008). "Potential changes in Korean water resources estimated by a high resolution climate simulation." Climate Research, Vol. 35, pp. 213-226. https://doi.org/10.3354/cr00704
  4. Bae, D.-H., Jung, I.-W., and Lettenmaier, D.P. (2011). "Hydrologic uncertainties in climate change from IPCC AR4 GCM simulation of the Chungju basin, Korea." Journal of Hydrology, Vol. 401, No. 1-2, pp. 90-105. https://doi.org/10.1016/j.jhydrol.2011.02.012
  5. Bentsen, M., Bethke, I., Debernard, J.B., Iversen, T., Kirkevag, A., Seland, O., Drange, H., Roelandt, C., Seierstad, I.A., Hoose, C., and Kristjansson, J.E. (2013). "The norwegian earth system model, NorESM1-M-part 1: Description and basic evaluation of the physical climate." Geoscientific Model Development, Vol. 6, pp. 687-720. https://doi.org/10.5194/gmd-6-687-2013
  6. Cannon, A.J. (2015). "Selecting GCM scenarios that span the range of changes in a multimodel ensemble: Application to CMIP5 climate extremes indices." Journal of Climate, Vol. 28, pp. 1260-1267. https://doi.org/10.1175/JCLI-D-14-00636.1
  7. Chen, J., Gao, C., Zeng, X., Xiong, M., Wang, Y., Jing, C., Krysanova, V., Huang, J., Zhao, Na., and Su, B. (2017). "Assessing changes of river discharge under global warming of 1.5$^{\circ}C$ and 2$^{\circ}C$ in the upper reaches of the Yangtze river basin: Approach by using multiple-GCMs and hydrological models." Quaternary International, Vol. 453, pp. 63-73. https://doi.org/10.1016/j.quaint.2017.01.017
  8. Davini, P., Cagnazzo, C., and Anstey, J.A. (2014). "A blocking view of the stratosphere-troposphere coupling." Journal of Geophysical Research: Atmospheres, Vol. 119, No. 19, pp. 11100-11115. https://doi.org/10.1002/2014JD021703
  9. Guo, X., Huang, J., Luo, Y., Zhao, Z., and Xu, Y. (2016). "Projection of precipitation extremes for eight global warming targets by 17 CMIP5 models." Natural Hazards, Vol. 84, No. 3, pp 2299-2319. https://doi.org/10.1007/s11069-016-2553-0
  10. Hwang, S., Cho, J., and Yoon, K.S. (2018). "Assessing the skills of CMIP5 GCMs in reproducing spatial climatology of precipitation over the coastal area in East Asia." Journal of Korea Water Resources Association, Vol. 51, No. 8, pp. 629-642. https://doi.org/10.3741/JKWRA.2018.51.8.629
  11. Immerzeel, W.W., Pellicciotti, F., and Bierkens, M.F.P. (2013). "Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds." Nature Geoscience, Vol. 6, No. 8, pp. 1-4. https://doi.org/10.1038/ngeo1704
  12. Intergovernmental Panel on Climate Change (IPCC) (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, U.K.
  13. Jung, I., Eum, H.-I., Lee, E.-J., and Cho, J. (2018). "Development of continuous rainfall-runoff model for flood forecasting on the large-scale basin." Journal of Korea Water Resources Association, Vol. 44, No. 1, pp. 51-64. https://doi.org/10.3741/JKWRA.2011.44.1.51
  14. Jung, I.W., Bae, D.H., and Lee, B.J. (2012). "Development of representative GCMs selection technique for uncertainty in climate change scenario." Journal of the Korean Society of Agricultural Engineers, Vol. 60, No. 5, pp. 149-162. https://doi.org/10.5389/KSAE.2018.60.5.149
  15. Kim, J.-B., Im, E.-S., and Bae, D.-H. (2020a). "Intensified hydroclimatic regime in Korean basins under 1.5 and 2$^{\circ}C$ global warming." International Journal of Climatology, Vol. 40, pp. 1965-1978. https://doi.org/10.1002/joc.6311
  16. Kim, J.-B., So, J.-M., and Bae, D.-H. (2020b). "Global warming impacts on severe drought characteristics in Asia monsoon region." Water, Vol. 12, No. 5, 1360. https://doi.org/10.3390/w12051360
  17. Laloyaux, P., de Boisseson, E., Balmaseda, M., Bidlot, J.R., Broennimann, S., Buizza, R., Dalhgren, P., Dee, D., Haimberger, L., Hersbach, H., Kosaka, Y., Martin, M., Poli, P., Rayner, N., Rustemeier, E., and Schepers, D. (2018). "CERA-20C: A coupled reanalysis of the twentieth century." Journal of Advances in Modeling Earth Systems, Vol. 10, No. 5, pp. 1172-1195. https://doi.org/10.1029/2018MS001273
  18. Lee, M.H., and Bae, D.H. (2015). "Climate change impact assessment on green and blue water over Asian monsoon region." Water Resources Management, Vol. 29, No. 7, pp. 2407-2427. https://doi.org/10.1007/s11269-015-0949-3
  19. Liebmann, B., and Smith, C.A. (1996). "Description of a complete (interpolated) outgoing longwave radiation dataset." Bulletin of the American Meteorological Society, Vol. 77, pp. 1275-1277.
  20. Liu, J., Xu, H., and Deng, J. (2018). "Projections of East Asian summer monsoon change at global warming of 1.5 and 2$^{\circ}C$." Earth System Dynamics, Vol. 9, pp. 427-439. https://doi.org/10.5194/esd-9-427-2018
  21. Lutz, A.F., Maat, H.W.T., Biemans, H., Shrestha, A.B., Westerd, P., and Immerzeel, W.W. (2016). "Selecting representative climate models for climate change impact studies: an advanced envelopebased selection approach." International Journal of Climatology, Vol. 36, pp. 3988-4005. https://doi.org/10.1002/joc.4608
  22. McSweeney, C.F., Jones, R.G., Lee, R.W., and Rowell, D.P. (2015). "Selecting CMIP5 GCMs for downscaling over multiple regions." Climate Dynamics, Vol. 44, pp. 3237-3260. https://doi.org/10.1007/s00382-014-2418-8
  23. Nyunt, C.T., Yamamoto, H., Yamamoto, A., and Koike, T. (2012). "Application of bias-correction and downscaling method to Kalu Ganga basin in Sri Lanka." Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulics Engineering), Vol. 56, No. 4, pp. 115-120.
  24. Schreck, C.J., Lee, H.‐T., and Knapp, K.R. (2018). "HIRS outgoing longwave radiation-Daily climate data record: Application toward identifying tropical subseasonal variability." Remote Sensing, Vol. 10, No. 9, 1325. https://doi.org/10.3390/rs10091325
  25. Sexton, D.M.H., Murphy, J.M., Collins, M., and Webb, M.J. (2012). "Multivariate probabilistic projections using imperfect climate models part I: Outline of methodology." Climate Dynamics, Vol. 38, pp. 2513-2542. https://doi.org/10.1007/s00382-011-1208-9
  26. Singh, V., and Fiorentino, M. (1996). Geographical Information Systems in Hydrology. Kluwer Academic Publishers, Water Science and Technology Library, Boston, M.A., U.S., pp. 175-194.
  27. Sorg, A., Huss, M., Rohrer, M., and Stoffel, M. (2014). "The days of plenty might soon be over in glacierized Central Asian catchments." Environmental Research Letter, Vol. 9, No. 10, 104018. https://doi.org/10.1088/1748-9326/9/10/104018
  28. Sperber, K.R., Annamalai, H., Kang, I.-S., Kitoh, A., Moise, A., Turner, A., Wang, B., and Zhou, T. (2013). "The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century." Climate Dynamics, Vol. 41, pp. 2711-2744. https://doi.org/10.1007/s00382-012-1607-6
  29. Taylor, K.E. (2001). "Summarizing multiple aspects of model performance in a single diagram." Journal of Geophysical Research, Vol. 106, No. D7, pp. 7183-7192. https://doi.org/10.1029/2000JD900719
  30. Taylor, K.E., Stouffer, R.J., and Meehl, G.A. (2012). "An overview of CMIP5 and the experiment design." Bulletin of the American Meteorological Society, Vol. 93, No. 4, pp. 485-498. https://doi.org/10.1175/BAMS-D-11-00094.1
  31. Tegegne, G., Kim, Y.‐O., and Lee, J.‐K. (2019). "Spatiotemporal reliability ensemble averaging of multimodel simulations." Geophysical Research Letters, Vol. 46, No. 12, pp. 12312-12330.
  32. Thanh, L., and Bae, D.H. (2013). "Evaluating the utility of IPCC AR4 GCMs for hydrological application in South Korea." Water Resources Management, Vol. 27, No. 9, pp. 3227-3246. https://doi.org/10.1007/s11269-013-0338-8
  33. Voldoire, A., Sanchez-Gomez, E., Salas y Me'lia, D., Decharme, B., Cassou, C., Se'ne'si, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., De'que', M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa , S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., and Chauvin, F. (2013). "The CNRMCM5.1 global climate model: Description and basic evaluation." Climate Dynamics, Vol. 40, pp. 2091-2121, doi: 10.1007/s00382-011-1259-y.
  34. Wang, H.-M., Chen, j., Cannon, A.J., Xu, C.-Y., and Chen, H. (2018). "Transferability of climate simulation uncertainty to hydrological impacts." Hydrology and Earth System Sciences, Vol. 22, pp. 3739-3759. https://doi.org/10.5194/hess-22-3739-2018
  35. Wang, R., Cheng, Q., Liu, L., Yan, C., and Huang, G. (2019). "Multi-model projections of climate change in different RCP scenarios in an arid inland region, Northwest China." Water, Vol, 11, No. 2, 347, doi:10.3390/w11020347.
  36. Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J. (2014). "The inter-sectoral impact model intercomparison project (ISI-MIP): Project framework." Proceedings of the National Academy of Sciences of the United States of America, Vol. 111, No. 9, pp. 3228-3232. https://doi.org/10.1073/pnas.1312330110
  37. Wu, T., Song, L., Li, W., Wang, Z., Zhang, H., Xin, X., Zhang, Y., Zhang, L., Li, J., Wu, F., Liu, Y., Zhang, F., Shi, X., Chu, M., Zhang, J., Fang, Y., Wang, F., Lu, Y., Liu, X., Wei, M., Liu, Q., Zhou, W., Dong, M., Zhao, Q., Ji, J., Li, L., and Zhou, M. (2014). "An overview of BCC climate system model development and application for climate change studies." Journal of Meteorological Research, Vol. 28, No. 1, pp. 34-56, doi: 10.1007/s13351-014-3041-7.
  38. Yang, D., and Saenko, O.A. (2012). "Ocean heat transport and its projected change in CanESM2." Journal of Climate, Vol. 25, pp. 8148-8163. https://doi.org/10.1175/JCLI-D-11-00715.1
  39. Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A. (2012). "APHRODITE: Constracting a longterm daily gridded precipitation dataset for Asia based on a dense network of rain gauges." Bulletin of the American Meteorological Society, Vol. 93, pp. 1401-1415, doi: 10.1175/BAMS-D-11-00122.1.