• Title/Summary/Keyword: Capillary performance

Search Result 233, Processing Time 0.025 seconds

Simulation of the Refrigeration Cycle Equipped with a Non-Adiabatic Capillary Tube (비단열 모세관의 영향을 고려한 냉동 사이클 시뮬레이션)

  • Park, Sang-Goo;Son, Ki-Dong;Jeong, Ji-Hwan;Kim, Lyun-Su
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.131-139
    • /
    • 2009
  • The simulation of refrigeration cycle is important since the experimental approach is costly and time-consuming. The present paper focuses on the simulation of a refrigeration cycle equipped with a capillary tube-suction line heat exchanger(SLHX), which is widely used in small vapor compression refrigeration systems. The present simulation is based on fundamental conservation equations of mass, momentum, and energy. These equations are solved through an iterative process. The non-adiabatic capillary tube model is based on homogeneous two-phase flow model. This model is used to understand the refrigerant flow behavior inside the non-adiabatic capillary tube. The simulation results show that both of the location and length of heat exchange section influence the coefficient of performance (COP).

Determination of Total Phenols in Environmental Waters by Capillary-HPLC with U.S.E.P.A. Classified Eleven Priority Pollutant Phenols after Nitrosation and Their Visible Spectrophotometric Detection

  • Chung, Yong-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.297-302
    • /
    • 2005
  • The determination of total phenols was accomplished by capillary-high performance liquid chromatography (capillary-HPLC) after nitrosation of the U.S.E.P.A. classified 11 priority pollutant phenols, using the nitrosated parent phenol (POHNO) as a reference for calibration. The optimum mobile phase composition for this analysis was found by examining the effect of changing the percentage of acetonitrile (MeCN) in the mobile phase on retention factors (k values) and peak intensities. As MeCN percentage was increased, k values were reduced and peak intensities were generally increased. From the results obtained, it was found that the optimum mobile phase was 90%(v/v) MeCN solution at pH 8.0, the detection wavelength of 400 nm, and a detection limit (D.L., concentration at signal to noise ratio (S/N) of 3.0) of 4.5 ${\times}$ $10^{-7}$ M. In addition, 10 of the 11 phenols present in mineral or waste water were separated after the nitrosation by capillary-HPLC. The optimum mobile phase for separation was a 40%(v/v) MeCN solution at pH 5.0.

Frictional Pressure Drop of a Capillary Tube Flow of Pure HFC Refrigerants and Their Mixtures (HFC 순수냉매 및 혼합냉매의 모세관내에서 마찰에 의한 압력강하)

  • Chang, S.D.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.589-599
    • /
    • 1995
  • The frictional pressure drop of a capillary tube flow is experimentally investigated for pure refrigerants such as R32, R125, and R134a and refrigerant mixtures such as R32/R134a(30/70 by mass percent), R32/R125(60/40), R125/R134a(30/70), and R32/R125/R134a(23/25/52). The binary interaction parameters for the calculation of viscosities of refrigerant mixtures are found based upon the data in the open literature. Several homogeneous flow models predicting the viscosity of two-phase region are compared to select the best model. Cicchitti's equation is known to be the most adequate for the prediction of the viscosity for refrigerant mixtures, which is used in the analysis of adiabatic capillary flows. A model for the prediction of the frictional pressure drop of single and two-phase flow is developed for refrigerant mixtures in this study. This model may be used to design and analyze the performance of a capillary tube in the refrigerating system.

  • PDF

Performance Evaluations of a Residential Small Multi-Refrigeration System Considering the Adiabatic Characteristics (단열 특성을 고려한 가정용 소형 멀티 냉동시스템의 성능에 관한 연구)

  • Lee, Moo-Yeon;Lee, Dong-Yeon;Joo, Young-Ju;Kim, Sang-Uk;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.868-875
    • /
    • 2007
  • In this paper, performance characteristics of a domestic kim-chi refrigerator are predicted by using the theoretical calculation and experimental method. The objective of this study is to find out the best design points of the refrigeration system and to calculate an adiabatic characteristic with variation to outdoor temperatures. The best design points such as refrigerant charge amount and capillary length were experimentally investigated. And the theoretical calculation is conducted as a function of calculation parameters and outdoor temperatures. According to this study results, the best design points of a refrigeration system with 2 rooms are 95 g of a refrigerant charge amount and 3500 / 3500 mm of capillary lengths and the best design points of a refrigeration system with 3 rooms are 100 g of a refrigerant charge amount and 3000/3000/6000mm of capillary lengths. And the power consumptions of both systems are 13.57 and 18.2 kWh/month. The worst part of heat loss is a front side of a domestic kim-chi refrigerator body.

Capacity Modulation of an Inverter Driven Heat Pump with Expansion Devices

  • Lee, Yong-Taek;Kim, Yong-Chan;Park, Youn-Cheol;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.60-68
    • /
    • 2000
  • An experimental study was peformed to investigate characteristics of an inverter driven heat pump system with a variation of compressor frequency and expansion device. The compressor frequency varied from 30Hz to 75Hz, and the performance of the system ap-plying three different expansion devices such as capillary tube, thermostatic expansion valve(TXV), and electronic expansion valve (EEV) was measured. The load conditions were altered by varying the temperatures of the secondary fluid entering condenser and evaporator with a constant flow rate. When the test condition was deviated from the standard value(rated value), TXV and EEV showed better performance than capillary tube due to optimal control of mass flow rate and superheat. In the present study, it was observed that the variable area expansion device had better performance than constant area expansion device in the inverter heat pump system due to active control of flow area with a change of com-pressor frequency and load conditions.

  • PDF

A study on the performance of a split system inverter air-conditioner at different operation conditions (분리형 인버터 에어컨의 운전조건에 따른 성능 연구)

  • Kim, Man-Hoe
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.113-121
    • /
    • 1998
  • The performance evaluation of a residential split system inverter air-conditioner has been conducted analytically and experimentally at different system operating conditions. A simulation program for modelling an air-conditioning system which consists of a compressor, a condenser, a capillary tube, an evaporator and related attachments was developed on the basis of the Oak Ridge heat pump design model, MARK III. The accuracy of the simulation results for the compressor frequencies of 32, 68 and 79 Hz for the residential split system inverter air-conditioner has been estimated by comparing calculation results to the experimental data and parametric study has been performed to investigate the effect of design parameters and operation conditions on the system performance.

A Study on the Capillary Limitation in Copper-Water Heat Pipes with Screen Wicks (스크린 윅을 삽입한 동-물 히트파이프에서 모세관 한계에 관한 연구)

  • 박기호;이기우;노승용;이석호;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1023-1030
    • /
    • 2002
  • This paper is to research the heat transfer characteristic performance of the copper-water heat pipe with the screen wicks. Recently, the semiconductor capacity of an electronic unit has been larger, on the contrary, its size has been much smaller. As a result, a high-performance cooling system is needed. Experimental variables are inclination angles, temperatures of cooling water and the mesh number of screen wicks. The distilled water was used for the working fluid. At the inclination angle $6^{\circ}$ in top heat mode, the two layers of the 100-mesh screen wick showed the best heat transfer performance. The thermal resistance of the two layers with the 100-mesh screen was 0.7~$0.8^{\circ}C$/W.

Evaluation on the Cyclic and Adiabatic Performance of a Small Multi-Refrigeration system (김치냉장고를 중심으로한 소형 멀티 냉동시스템의 성능특성 변화에 관한 연구)

  • Lee, Moo-Yeon;Choi, Seok-Jae;Kim, Sang-Ok;Lee, Won-Keum
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.769-774
    • /
    • 2003
  • In this paper, the performance of a domestic Kim-Chi refrigerator is predicted by using a calculation model & experiment. The objectives of this study are to find out the best design points of a refrigeration system and calculate an adiabatic characteristic to change outdoor temperature. The best design points such as refrigerant charge and capillary length were experimentally investigated. And the calculation model is conducted as a function of calculation parameters and outdoor temperature. According to this study results, the best design points of a refrigeration system are each 95g of a refrigerant charge and 3500/3500mm of capillary lengths. And the power consumption is 13.578 Kwh/month. And a part of the worst heat loss is a front side of a domestic Kim-Chi refrigerator body.

  • PDF

Experimental Investigations on the Temperature Characteristics of Oscillating Heat Pipe with Various Filling Ratio

  • Jeong, Hyo-Min;Chung, Han-Shik;Lee, Kwang-Sung;Tanshen, Md.Riyad;Lee, Tae-Jin;Lee, Sin-Il
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.47-53
    • /
    • 2013
  • The article focuses on the Temperature characteristics inside single loop oscillating heat pipe (OHPs). In this paper, heat pipe is experimentally studied thereby providing vital information on the parameter dependency of their thermal performance. The impact depiction has been done for the variation of tube model of the device. OHPs are made of copper capillary tubes of outer diameter 6.25 mm, inner diameter 4 mm heated by constant temperature water bath cooled by ambient temperature. Using four types of OHPs of copper capillary tubes length of 1500mm and HP length 650mm inside tubes working fluid is R-22 Pressure 8 bar and mass 34g,32g,28g,16g. The results indicate a strong influence of filling ratio on the performance.