• Title/Summary/Keyword: Capacity fading

Search Result 229, Processing Time 0.029 seconds

Fabrication of LiMn2O4 Thin-Film Rechargeable Batteries by Sol-Gel Method and Their Electrochemical Properties (졸-겔 방법을 이용한 LiMn2O4 박막 이차 전지 제작 및 전기화학적 특성 조사)

  • Lee, J.H.;Kim, K.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.205-210
    • /
    • 2011
  • Structural and electrochemical properties of spinel oxide $LiMn_2O_4$ thin films prepared by using a sol-gel method on Pt/Ti/$SiO_2$/Si substrates were investigated. When Li/Mn molar ratio of the film was smaller than 0.5, $Mn_2O_3$hase was found to coexist with $LiMn_2O_4$. Half-cell batteries fabricated using the $LiMn_2O_4$ films as the cathode were put into chargedischarge (C-D) cycles and the change in structural properties of the cathode after the cycles was examined by X-ray diffraction and Raman spectroscopy. As the C-D cycle number increases, the discharge capacity of pure $LiMn_2O_4$ battery gradually decreases, being reduced to 72% of the initial capacity at 300 cycles. Such capacity fading is attributable to the decrease in the number of $Li^+$ ions that return to the tetrahedral sites of the spinel structure during the discharge step and the resultant increase in $Mn^{4+}$ density in the film. Also, $Mn_2O_3$ phase gradually appeared in the film as the cycle number increases.

Efficient Link Adaptation Scheme using Precoding for LTE-Advanced Uplink MIMO (LTE-Advanced에서 프리코딩에 의한 효율적인 상향링크 적응 방식)

  • Park, Ok-Sun;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2B
    • /
    • pp.159-167
    • /
    • 2011
  • LTE-Advanced system requires uplink multi-antenna transmission in order to achieve the peak spectral efficiency of 15bps/Hz. In this paper, the uplink MIMO system model for the LTE-Advanced is proposed and an efficient link adaptation shceme using precoding is considered providing error rate reduction and system capacity enhancement. In particular, the proposed scheme determines a transmission rank by selecting the optimal wideband precoding matrix, which is based on the derived signal-to-interference and noise ratio (SINR) for the minimum mean squared error (MMSE) receivers of $2{\times}4$ multiple input multiple output (MIMO). The proposed scheme is verified by simulation with a practical MIMO channel model. The simulation results of average block-error-rate(BLER) reflect that the gain due to the proposed rank adapted transmission over full-rank transmission is evident particularly in the case of lower modulation and coding scheme (MCS) and high mobility, which means the severe channel fading environment.

Path Loss Model with Multiple-Antenna and Doppler Shift for High Speed Railroad Communication (다중 안테나와 Doppler Shift를 고려한 고속 철도의 경로 손실 모델)

  • Park, Hae-Gyu;Yoon, Kee-Hoo;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.8
    • /
    • pp.437-444
    • /
    • 2014
  • In this paper, we propose a path loss model with the multiple antennas and doppler shift for high speed railroad communication. Path loss model is very important in order to design consider diverse characteristic in high-speed train communication. Currently wireless communication systems use the multiple antennas in order to improve the channel capacity or diversity gain. However, until recently, many researches on path loss model only consider geographical environment between the transmitter and the receiver. There is no study about path loss model considering diversity effect and doppler shift. In order to make average residuals considering doppler shift we use tuned free space path loss model which is utilized for measurement results at high speed railroad. The environment of high speed rail is mostly at viaduct and flatland over than 50 percent. And in order to make average residuals considering multiple antenna we use theoretical estimation of diversity gain with MRC scheme. proposed model predict loss of received signal by estimating average residuals between diversity effect and doppler shift.

Effect of Cathodes Prepared with Different Compositions on the Performace of Li-Sulfur Secondary Battery (리튬-황 이차전지 양극 조성 성분의 비율이 전지 성능에 미치는 영향에 관한 연구)

  • Choe, Yun Jeong;Ju, Jeh Beck;Cho, Won Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2018
  • For the high performance of the secondary battery to satisfy the demands in electronic and energy industries, it is necessary to develop more safe, environmentally friendly and economical electrode. Recently, lithium-sulfur batteries are receiving attention as next-generation secondary cells in terms of its remarkable theoretical capacity, energy density and environmental characteristics. However, they have not yet overcome a fading phenomenon due to the dissolving of the polysulfide. In this study, we intend to fabricate a battery using sulfur, a higher energy density than the other bipolar materials, as an improved secondary cell electrode material. The aim of the study is to improve battery performance with an optimal ratio of the cathode components; such as sulfur of active material and Super P of an electronic conductor.

A study on the Capacity Fading Mechanism of Sulfur Cathode Depending on Discharge Potential for Li Rechargeable Battery (Li 이차전지용 유황 양극의 방전 전위에 따른 퇴화거동에 관한 연구)

  • Kim, Hyun-Seok;Han, Sang-Cheol;Song, Min-Sang;Kim, Jin-Ho;Ahn, Hyo-Jun;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.46-52
    • /
    • 2003
  • 유황 양 전극과 액체 전해질, 리튬 금속을 음극으로 사용한 리튬 유황 전지를 제조하여 그 특성을 조사하였다. 유황 전극은 유황파우더와 carbon black 을 도전재로, 그리고 바인더로 PVdF를 사용하여 제조하였다. 이렇게 제조된 셀은 두개의 다른 전압 구간에서 충방전 실험을 행하였다. 첫 번째 셀은 $S_8+{\chi}Li{\leftrightarrow}Li_2S_x(X=4{\sim}12)$ 반응만을 일어나 게 하기 위하여 2.1V 와 2.5V 사이에서, 그리고 두 번째 셀은 $Li_2S_x+{\chi}Li{\leftrightarrow}Li_2S(x=2{\sim}4)$의 반응만을 일어나게 하기 위하여 1.5V 와 2.5V 에서 충방전 하였다. 그 결과 첫 번째 셀이 더 좋은 싸이클 특성을 가지는 것을 확인 탈 수 있었다. 각 전압구간에서 각 셀이 충방전 되는 동안, 전해질 내로 녹아난 유황의 양은 큰 차치가 없는 것을 확인하였다. 그리고, 전압에 따른 전극의 임피던스를 측정한 결과, 방전이 끝난 후 큰 저항성분이 새로 생긴 것을 확인 할 수 있었다. 이는 사이클이 진행된 후의 전극표면을 SEM 분석을 행한 결과로부터 사이클이 진행된 후 전극 표면에 최종 반응 산물인 $Li_2S$ 가 피막형태로 형성된것을 확인 할 수 있었다.

Performance Analysis of Cooperative Diversity on the Usage of Opportunistic Relay (기회주의적인 중계기 사용에 대한 협력 다이버시티의 성능 분석)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.7-12
    • /
    • 2014
  • The data forwarding transmission is an important function of the relay in cooperative communication in wireless communication systems. However, additional relay cause the waste of power consumption and cost. Therefore, in this paper, we consider how to use the user mobile devices in stead of relays to deal with this problem. In this paper, we proposed the protocol that divide each relay into two states of idle and non-idle. The receiver has two functions of base station and user mobile device. In this case, it is possible that no additional cost, and improve the spectral efficiency and network capacity. We verified BER performance for the proposed protocol over Rayleigh fading through Monte-Carlo simulation.

Performance Analysis of DS/CDMA with Diversity and Channel Coding in a Land-Mobile Satellite Channel (육상이동 위성채널에서 다이버시티와 채널 부호를 적용한 DS / CDMA 성능 분석)

  • Kim, Hong-Chil;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.1
    • /
    • pp.42-51
    • /
    • 1997
  • The satellite channel with a line-of-sight signal component is modeled by a shadowed Rician fading channel. We adopt a direct-sequence / code division multiple access (DS / CDMA), which has the advantage to suppress the multipath effect and increase the user capacity. The performance which is evaluated by bit error probability is subjected to the influence of branch number, multi-user number, and spreading code-length. As the result of the analysis, performance advance is achieved with multi-user number decreasing, number of brnaches increasing, and spreading code-length increasing as chip duration is constant. To use both of diversity combining scheme and channel coding is more efficient for performance improvement than the case using diversity combining scheme only. The use of BCH coding and convolutional coding shows better consequence than Hamming coding. Totally, the performance degradation for heavy shadowing is much larger than that for light and average shadowing as heavy shadowing decreases LOS signal.

  • PDF

Performance Analysis of Decode-and-Forward Relaying Based on Optimal Relay Selection (디코딩 후 전달방식에서 최적의 중계노드 선택방법에 대한 링크레벨 성능분석)

  • Lee, In-Ho;Kim, Dong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.36-43
    • /
    • 2008
  • In this paper, we propose an optimal relay selection scheme for decode-and-forward relaying systems. The optimal relay selection minimizes the number of time slots used to relay source's signal and maximizes an end-to-end signal-to-noise ratio. However, decode-and-forward relaying systems require additional overhead for the optimal relay selection. Assuming independent and identically distributed Rayleigh fading channels, we provide exact and closed-form expressions for the outage probability of capacity and the bit error rate for decode-and-forward relaying systems with the optimal relay selection. It is shown that the analytic results are perfectly matched with the simulated ones. When the numbers of relay nodes are 2, 4, and 8, and the numbers of time slots for overhead are 1, 2, and 4, respectively, the proposed system achieves 1 dB, 2 dB, and 3 dB gains at 1% bit error rate, respectively, and 0.5 dB, 4 dB, and 12 dB gains at 1% outage probability for 1 bps/Hz, respectively, over the conventional decode-and-forward relaying system.

Opportunistic Relay Selection for Joint Decode-and-Forward Based Two-Way Relaying with Network Coding

  • Ji, Xiaodong;Zheng, Baoyu;Zou, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1513-1527
    • /
    • 2011
  • This paper investigates the capacity rate problems for a joint decode-and-forward (JDF) based two-way relaying with network coding. We first characterize the achievable rate region for a conventional three-node network scenario along with the calculation of the corresponding maximal sum-rate. Then, for the goal of maximizing the system sum-rate, opportunistic relay selection is examined for multi-relay networks. As a result, a novel strategy for the implementation of relay selection is proposed, which depends on the instantaneous channel state and allows a single best relay to help the two-way information exchange. The JDF scheme and the scheme using relay selection are analyzed in terms of outage probability, after which the corresponding exact expressions are developed over Rayleigh fading channels. For the purpose of comparison, outage probabilities of the amplify-and-forward (AF) scheme and those of the scheme using relay selection are also derived. Finally, simulation experiments are done and performance comparisons are conducted. The results verify that the proposed strategy is an appropriate method for the implementation of relay selection and can achieve significant performance gains in terms of outage probability regardless of the symmetry or asymmetry of the channels. Compared with the AF scheme and the scheme using relay selection, the conventional JDF scheme and that using relay selection perform well at low signal-to-noise ratios (SNRs).

Characterization of NiO and Co3O4-Doped La(CoNi)O3 Perovskite Catalysts Synthesized from Excess Ni for Oxygen Reduction and Evolution Reaction in Alkaline Solution (과량의 니켈 첨가로 합성된 NiO와 Co3O4가 도핑된 La(CoNi)O3 페로브스 카이트의 알칼리용액에서 산소환원 및 발생반응 특성)

  • BO, LING;RIM, HYUNG-RYUL;LEE, HONG-KI;PARK, GYUNGSE;SHIM, JOONGPYO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.41-52
    • /
    • 2021
  • NiO and Co3O4-doped porous La(CoNi)O3 perovskite oxides were prepared from excess Ni addition by a hydrothermal method using porous silica template, and characterized as bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for Zn-air rechargeable batteries in alkaline solution. Excess Ni induced to form NiO and Co3O4 in La(CoNi)O3 particles. The NiO and Co3O4-doped porous La(CoNi)O3 showed high specific surface area, up to nine times of conventionally synthesized perovskite oxide, and abundant pore volume with similar structure. Extra added Ni was partially substituted for Co as B site of ABO3 perovskite structure and formed to NiO and Co3O4 which was highly dispersed in particles. Excess Ni in La(CoNi)O3 catalysts increased OER performance (259 mA/㎠ at 2.4 V) in alkaline solution, although the activities (211 mA/㎠ at 0.5 V) for ORR were not changed with the content of excess Ni. La(CoNi)O3 with excess Ni showed very stable cyclability and low capacity fading rate (0.38 & 0.07 ㎶/hour for ORR & OER) until 300 hours (~70 cycles) but more excess content of Ni in La(CoNi)O3 gave negative effect to cyclability.