• Title/Summary/Keyword: Capacitor voltage control

Search Result 628, Processing Time 0.027 seconds

An Interleaved Five-level Boost Converter with Voltage-Balance Control

  • Chen, Jianfei;Hou, Shiying;Deng, Fujin;Chen, Zhe;Li, Jian
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1735-1742
    • /
    • 2016
  • This paper proposes an interleaved five-level boost converter based on a switched-capacitor network. The operating principle of the converter under the CCM mode is analyzed. A high voltage gain, low component stress, small input current ripple, and self-balancing function for the capacitor voltages in the switched-capacitor networks are achieved. In addition, a three-loop control strategy including an outer voltage loop, an inner current loop and a voltage-balance loop has been researched to achieve good performances and voltage-balance effect. An experimental study has been done to verify the correctness and feasibility of the proposed converter and control strategy.

Adaline-Based Control of Capacitor Supported DVR for Distribution System

  • Singh, Bhim;Jayaprakash, P.;Kothari, D.P.
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.386-395
    • /
    • 2009
  • In this paper, a new control algorithm for the dynamic voltage restorer (DVR) is proposed to regulate the load terminal voltage during various power quality problems that include sag, swell, harmonics and unbalance in the voltage at the point of common coupling (PCC). The proposed control strategy is an Adaline (Adaptive linear element) Artificial Neural Network (ANN) and is used to control a capacitor supported DVR for power quality improvement. A capacitor supported DVR does not need any active power during steady state because the voltage injected is in quadrature with the feeder current. The control of the DVR is implemented through derived reference load terminal voltages. The proposed control strategy is validated through extensive simulation studies using the MATLAB software with its Simulink and SimPower System (SPS) toolboxes. The DVR is found suitable to support its dc bus voltage through the control under various disturbances.

Voltage Balancing Control of Input Voltage Source Employing Series-connected Capacitors in 7-level PWM Inverter (7-레벨 PWM 인버터의 직렬 커패시터 입력전원의 전압균형제어)

  • Kim, Jin-San;Kang, Feel-soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.209-215
    • /
    • 2018
  • This paper present a 7-level PWM inverter adopting voltage balancing control to series-connected input capacitors. The prior proposed 7-level PWM inverter consists of dc input source, three series-connected capacitors, two bidirectional switch modules, and an H-bridge. This circuit topology is useful to increase the number of output voltage levels, however it fails to generate 7-level in output voltage without consideration for voltage balancing among series-connected capacitors. Capacitor voltage imbalance is caused on the different period between charging and discharging of capacitor. To solve this problem, we uses the amplitude modulation of carrier wave, which is used to produce the center output voltage level. To verify the validity of the proposed control method, we carried out computer-aided simulation and experiments using a prototype.

Modeling, Analysis, and Enhanced Control of Modular Multilevel Converters with Asymmetric Arm Impedance for HVDC Applications

  • Dong, Peng;Lyu, Jing;Cai, Xu
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1683-1696
    • /
    • 2018
  • Under the conventional control strategy, the asymmetry of arm impedances may result in the poor operating performance of modular multilevel converters (MMCs). For example, fundamental frequency oscillation and double frequency components may occur in the dc and ac sides, respectively; and submodule (SM) capacitor voltages among the arms may not be balanced. This study presents an enhanced control strategy to deal with these problems. A mathematical model of an MMC with asymmetric arm impedance is first established. The causes for the above phenomena are analyzed on the basis of the model. Subsequently, an enhanced current control with five integrated proportional integral resonant regulators is designed to protect the ac and dc terminal behavior of converters from asymmetric arm impedances. Furthermore, an enhanced capacitor voltage control is designed to balance the capacitor voltage among the arms with high efficiency and to decouple the ac side control, dc side control, and capacitor voltage balance control among the arms. The accuracy of the theoretical analysis and the effectiveness of the proposed enhanced control strategy are verified through simulation and experimental results.

Dynamic Voltage Compensation System Using Bi-directional DC/DC Converter of Electric Double-Layer Capacitor (EDLC의 양방향 DC/DC Converter를 이용한 동적 전압보상시스템)

  • Shon, Jin-Geun;Lee, Sang-Cheol;Lee, Gong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.108-111
    • /
    • 2007
  • A novel voltage sag compensator with hi-directional DC/DC converter of Electric double layer capacitor is proposed. Recently, the double-layer capacitor which is drawn attention as a new energy storage element has a lot of advantage such as no maintenance, long lifetime and quick charge/discharge characteristics with large current. This DC/DC converter is used to control the charging current to the double-layer capacitor and also used to keep the DC link voltage constant for discharge of the double-layer capacitor. Therefore, the proposed DC/DC converter has the high-efficiency controller, dynamic compensator of voltage sag is driven by this converter. Finally, experimental results show the validity of the control scheme and the ability of the dynamic voltage compensator.

  • PDF

Output Voltage Control Technique Using Current Forward Compensation for Phase Shifted Full Bridge Converter Without Output Capacitor (출력 커패시터가 없는 위상천이 풀브릿지 컨버터의 전류 전향 보상을 이용한 출력 전압 제어 기법)

  • Shin, You-Seung;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yual;Kang, Jeong-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.40-47
    • /
    • 2022
  • At present, the low-voltage, high-current type power supply is mainly used for effective sterilization in the ballast water treatment system. Research on PSFB converters without output capacitors has been ongoing. Such converters effectively treat ballast water without a separate disinfectant through electric pulses by applying a pulse-type power to the output electrode without an output capacitor. However, in the case of the pulse-type electrolysis treatment method, voltage overshoot can occur due to abrupt voltage fluctuations when the load changes, resulting in circuit reliability problems because of the output capacitorless system. Therefore, a new voltage control algorithm is required. In this paper, we will discuss voltage control for pulsed electrolysis topology without an output capacitor. The proposed voltage control method has been verified using Simulation and experiment. The usefulness of the proposed control method has been proven by the experimental results.

Research on the Mechanism of Neutral-point Voltage Fluctuation and Capacitor Voltage Balancing Control Strategy of Three-phase Three-level T-type Inverter

  • Yan, Gangui;Duan, Shuangming;Zhao, Shujian;Li, Gen;Wu, Wei;Li, Hongbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2227-2236
    • /
    • 2017
  • In order to solve the neutral-point voltage fluctuation problem of three-phase three-level T-type inverters (TPTLTIs), the unbalance characteristics of capacitor voltages under different switching states and the mechanism of neutral-point voltage fluctuation are revealed. Based on the mathematical model of a TPTLTI, a feed-forward voltage balancing control strategy of DC-link capacitor voltages error is proposed. The strategy generates a DC bias voltage using a capacitor voltage loop with a proportional integral (PI) controller. The proposed strategy can suppress the neutral-point voltage fluctuation effectively and improve the quality of output currents. The correctness of the theoretical analysis is verified through simulations. An experimental prototype of a TPTLTI based on Digital Signal Processor (DSP) is built. The feasibility and effectiveness of the proposed strategy is verified through experiment. The results from simulations and experiment match very well.

Input and Output Control of PWM Rectifiers using a Nonlinear Control Technique (비선형 제어기법을 이용한 PWM 정류기의 입출력 제어)

  • Lee, Dong-Chun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.701-708
    • /
    • 1999
  • The PWM rectifiers are capable of supplying sinusoidal current control and unity power factor control on the input side and dc output voltage control on the output side. By applying nonlinear control to the PWM rectifiers, the responses of input current and output voltage can be improved and due to fast voltage control the output electrolytic capacitor can be reduced remarkably. In addition, it is checked whether or not the current capacity of the reduced-size capacitor allows the ripple current of the rectifier. The nonlinear control technique gives a good performance for supply voltage disturbances. The validity of the proposed scheme has been verified by the experiment using DSP.

  • PDF

A Design of a High Performance UPS with Capacitor Current Feedback for Nonlinear Loads (비선형 부하에서 커패시터 전류 궤환을 통한 고성능 UPS 설계)

  • Lee, Woo-Cheol;Lee, Taeck-Kie
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.71-78
    • /
    • 2012
  • This paper presents a digital control solution to process capacitor current feedback of high performance single-phase UPS for non-linear loads. In all UPS the goal is to maintain the desired output voltage waveform and RMS value over all unknown load conditions and transient response. The proposed UPS uses instantaneous load voltage and filter capacitor current feedback, which is based on the double regulation loop such as the outer voltage control loop and inner current control loop. The proposed DSP-based digital-controlled PWM inverter system has fast dynamic response and low total harmonic distortion (THD) for nonlinear load. The control system was implemented on a 32bit Floating-point DSP controller TMS320C32 and tested on a 5[KVA] IGBT based inverter switching at 11[Khz]. The validity of the proposed scheme is investigated through simulation and experimental results.

Minimization of Voltage Stress across Switching Devices in the Z-Source Inverter by Capacitor Voltage Control

  • Tran, Quang-Vinh;Chun, Tae-Won;Kim, Heung-Gun;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.335-342
    • /
    • 2009
  • The Z-source inverter (ZSI) provides unique features such as the ability to boost dc voltage with a single stage simple structure. Although the dc capacitor voltage can be boosted by a shoot-through state, the voltage stress across the switching devices is rapidly increased, so high switching device power is required at the ZSI. In this paper, algorithms for minimizing the voltage stress are suggested. The possible operating region for obtaining a desired ac output voltage according to both the shoot-through time and active state time is investigated. The reference capacitor voltages are derived for minimizing the voltage stress at any desired ac output voltage by considering the dc input voltage. The proposed methods are carried out through the simulation studies and experiments with 32-bit DSP.