In this research report, we propose a heuristic algorithm with some primal recovery strategies for capacitated facility location problems (CFLP), which is a well-known combinatorial optimization problem with applications in distribution, transportation and production planning. Many algorithms employ the branch-and-bound technique in order to solve the CFLP. There are also some different approaches which can recover primal solutions while exploiting the primal and dual structure simultaneously. One of them is a MVCD (Mean Value Cross Decomposition) ensuring convergence without solving a master problem. The MVCD was designed to handle LP-problems, but it was applied in mixed integer problems. However the MVCD has been applied to only uncapacitated facility location problems (UFLP), because it was very difficult to obtain "Integrality" property of Lagrangian dual subproblems sustaining the feasibility to primal problems. We present some heuristic strategies to recover primal feasible integer solutions, handling the accumulated primal solutions of the dual subproblem, which are used as input to the primal subproblem in the mean value cross decomposition technique, without requiring solutions to a master problem. Computational results for a set of various problem instances are reported.
Consider a capacitated facility location problem in which the demands of customers are all equal and so are the capacities of facilities. Under the restriction that each customer's uniform demand be met by exactly one facility, the objective is to select a set of facilities to open, and to assign customer's demand to them so as to minimize the total cost which includes fixed costs of opening facilities as well as variable assignment costs. The problem is modelled as a pure zero-one program which may be viewed as a variant of well-known capacitated facility location problems. The purpose of this study is to develop efficient computational procedures for solving the pure zero-one facility location problems. Due to the special structure of our zero-one location problem with uniform demand, it can be converted to a location problem with the unimodular property. A Lagrangean relaxation algorithm is developed to solve the location problem. The algorithm is made efficient by employing a device which exploits the special structure of a surrogate constraint. The efficiency of the algorithm is analyzed through computational experiments with some test problems.
We present two local-search based metaheuristics for the multi-source capacitated facility location problem. In such a problem, each customer's demand can be supplied by one or more facilities. The problem is NP-hard and the number of locations in the optimal solution is unknown. To keep the search process effective, the proposed methods adopt the following features: (1) a multi-exchange neighborhood structure, (2) a tabu list that keeps track of recently visited solutions, and (3) a multi-start to enhance the diversified search paths. The transportation simplex method is applied in an efficient manner to obtain the optimal solutions to neighbors of the current solution under the algorithm framework. Two in-and-out selection rules are also proposed in the algorithms with the purpose of finding promising solutions in a short computational time. Our computational results for some of the benchmark instances, as well as some instances generated using a method in the literature, have demonstrated the effectiveness of this approach.
Given a tree structured network in which each node has its own demand and also stands for a candidate location of a potential facility, such as plant or warehouse, a capacitated facility location problem on the network (CFLPOT) is to decide capacitated facility locations so that the total demand occurred on the network can be satisfied from those facilities with the minimum cost. In this paper, we first introduce a mixed integer programming formulation for CFLPOT with two additional assumptions, the indivisible demand assumption and the contiguity assumption and then show that it can be reformulated as a tree partitioning problem with an exponential number of variables. We then show that it can be solved in O($n^2b$) time by utilizing the limited column generation method developed by Shaw (1993), where n is the total number of nodes in the network and b is the maximum facility capacity. We also develop a depth-first dynamic programming algorithm with a running time of O(nb) for finding the locally maximal reduced cost which plays an important role in the limited column generation method. Finally, we implement our algorithms on a set of randomly generated problems and report the computational results.
We consider Two-echelon Single source Capacitated Facility Location Problem (TSCFLP). TSCFLP is a variant or Capacitated Facility Location Problem (CFLP). which has been an important issue in boa academic and industrial aspects. Given a set or possible facility locations in two echelons (warehouse / plant), a set or customers, TSCFLP is a decision problem to find a set or facility locations to open and to determine an allocation schedule that satisfies the demands or the customers and the capacity constraints or the facilities, while minimizing the overall cost. It ran be shown that TSCFLP Is strongly NP-hard For TSCFLf, few algorithms are known. which are heuristics. We propose a disaggregated version or the standard mixed integer programming formulation or TSCFLP We also provide a class or valid Inequalities Branch-and-price algorithm with rutting plane method Is used to find an optimal solution Efficient branching strategy compatible with subproblem optimization problems Is also provided. We report computational results or tests on 15 randomly generated instances.
시설물 입지 선정 문제(FLP)는 전통적인 최적화 문제중에 하나이다. FLP에 공급제약과 하나의 고객은 하나의 시설물에서만 제품을 공급받을 수 있다는 제약을 추가하면 단일 시설물 공급제약을 가지는 시설물 위치 설정 문제(SSFLP)가 된다. SSFLP는 NP-hard 문제로 알려져 있으며 진화 알고리즘과 같은 휴리스틱 알고리즘을 사용하여 해결하는 것이 일반적이다. 본 논문에서는 SSFLP를 위한 효율적인 진화 알고리즘을 제안한다. 제안하는 알고리즘은 적응형 링크 조절 진화 알고리즘과 3가지 휴리스틱 해 개선 방법을 조합하여 고안되었다. 제안하는 알고리즘을 벤치마크 문제에 적용하여 다른 알고리즘과 성능을 비교분석해 본 결과, 제안하는 알고리즘은 중간 크기의 문제에서 대부분 최적해를 찾았으며 큰 문제에서도 안정된 결과를 보여주었다.
This paper deals with a capacitated ring-star network design problem (CRSNDP) with node capacity constraints. The CRSNDP is formulated as a mixed 0-1 integer problem, and a 2-phase heuristic solution procedure, ADD & VAM and RING, is developed, in which the CRSNDP is decomposed into two subproblems : the capacitated facility location problem (CFLP) and the traveling sales man problem (TSP). To solve the CFLP in phase I the ADD & VAM procedure selects hub nodes and their appropriate capacity from a candidate set and then assigns them user nodes under node capacity constraints. In phase II the RING procedure solves the TSP to interconnect the selected hubs to form a ring. Finally a solution of the CRSNDP can be achieved through combining two solution of phase I & II, thus a final design of the capacitated ring-star network is determined. The analysis of computational results on various random problems has shown that the 2-phase heuristic procedure produces a solution very fast even with large-scale problems.
Song, Byung Duk;Ko, Young Dae;Morrison, James R.;Hwang, Hark
Industrial Engineering and Management Systems
/
제12권3호
/
pp.190-197
/
2013
People are living longer than ever before. As a result, life expectancy is going up and the demand of long-term care facilities is increasing in most countries. The facilities provide rehabilitative, restorative, and skilled nursing care to patients or residents in need of assistance with activities of daily living. This study deals with the capacitated location and allocation problem of long-term care facilities in a city that consists of a finite number of regions. Assuming that in each region candidate locations for three types of facilities are already given, two integer programming models are developed under the closest assignment rule reflecting the demand characteristics of the facilities. Both the location and type of the facilities to be built become decision variables. To show the validity of the models, numerical problems are solved with commercial software, CPLEX. Also, sensitivity studies were conducted to identify relationships between the system parameters.
Capacitated facility location problems have received a great deal of attention in the past decade, resulting in a proliferation of algorithms for solving them. As is the case with mixed 1-1 integer programming problems, the computational success of such algorithms depends greatly on how to obtain lower bounds in good quality within a resonable time. The objective of this paper is to provide a comparative analysis of those algorithms in terms of lower bounds they produce. Analyses of the strategies for generating lower bounds as well as the quality of generated lower bounds are provided.
We consider the development of an integer programming model and algorithm for the ATM switching node location problem. There are two kinds of facilities, hub facilities and remote facilities, with different capacities and installation costs. Each customer needs to be connected to one or more hub facilities via remote facilities, where the hub(remote) facilities need to be installed at the same candidate installation site of hub(remote) facility. We are given a set of customers with each demand requirements, a set of candidate installation sites of facilities, and connection costs between facilities, We need to determine the locations to place facilities, the number of facilities for each selected location, the set of customers who are connected to each installed hub facilities via installed remote facilities with minimum costs, while satisfying demand requirements of each customer. We formulate this problem as a general integer programming problem and solve it to optimality. In this paper, we develop a branch-and-cut algorithm with path variables. In the algorithm, we consider the integer knapsack polytope and derive valid inequalities. Computational experiments show that the algorithm works well in the real world situation. The results of this research can be used to develop optimization algorithms to solve capacitated facility location problems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.