• Title/Summary/Keyword: Cap model

Search Result 262, Processing Time 0.025 seconds

A Smooth Elasto-Plastic Cap Model(I): Rate Formulation, Yield Surface Determination (연속 탄소성 캡 모델(I): 구성모델 및 항복면의 결정)

  • 서영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.15-23
    • /
    • 2001
  • 탄소성 캡 모델의 중요한 장점은 여러 가지 다공체의 전체적인 축차 및 체적의 비선형 상호거동을 동시에 다룰 수 있음에 있다. 그러나 대부분의 캡 모델이 가진 문제점중의 하나는 세 개의 독립적인 항복면이 불연속으로 연결되어 있음으로부터 기인된다. 본 연구에서는 이러한 항복면 사이의 연결점에서의 탄소성 접선 계수는 특이점이 되고 수치해석상 잠재적인 어려움을 내재하고 있음을 나타내고 이러한 문제의 해결방안의 하나로 세 개의 항복면이 연속적으로 만나는 새로운 탄소성 캡 모델을 제시하였다. 본 논문에서는 모델의 증분형태의 구성식 및 새로운 응력을 구하기 위한 활동 항복면의 결정을 판단하는 알고리즘이 제시되었다. 동반 논문에서는 내재적인 응력적분 및 일관적인 접선계수를 유도하였고 예제계산들을 수행하였다.

  • PDF

A Smooth Elasto-Plastic Cap Model(II): Integration Algorithm and Tangent Operator (연속 탄소성 캡 모델(II): 응력적분 및 접선계수)

  • 서영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • 보편적인 탄소성 캡 모델은 전통적인 등방 이론에 기초를 두고 있다. 이러한 모델의 응력적분 및 접선 계수의 유도는 여러 가지 논문들에 나타나 있지만 축차 및 체적 거동을 동시에 다루는 내제적인 해석법을 통한 지반해석은 아직까지는 많은 도전이 요구되고 있다. 앞선 동반 논문에서는 비연속적으로 연결된 항복면 사이의 접선 계수는 특이점이 됨을 나타내었고 이에 대하여 새로운 캡 모델의 구성식이 제시되었다. 본 논문에서는 제시된 캡 모델의 비 조건적이고 안정된 내재적 응력적분 및 일관된 탄소성 접선계수를 유도하였다. 또한 간단한 예제를 통하여 모델의 수행능력을 보여주었고 사면안정계산이 수행되었다.

  • PDF

Influence of Pile Cap's Boundary Conditions in Piled Pier Structures (교량 말뚝기초의 단부 지점조건의 영향분석)

  • Jeong, Sang-Seom;Won, Jin-Oh
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.25-32
    • /
    • 2005
  • Modeling techniques of piled pier were reviewed and the influences of pile cap's boundary conditions were analyzed in this study. Among various modeling techniques, equivalent cantilever method seems relatively simple for modeling pile groups and it has some problems to determine the virtual fixed points. Through the analyses, it was found that the method of nonlinear p-y model with soil springs was more appropriate than equivalent cantilever method. The method modeling a pile group using stiffness matrix seems useful for practical design, which can represent the nonlinear three-dimensional behavior of a piled pier. In this study, the stiffness matrix of a pile group could be estimated efficiently and precisely using three-dimensional nonlinear analysis programs of pile groups (FBPier 3.0, YSGroup).

  • PDF

Torsional and Flexural Behavior Characteristics of Symmetric Pier Copping Beam (대칭형 교각 코핑부 보의 비틀림 및 휨 거동 특성)

  • Kwon, Min-Ho;Jung, Hee-Hyo;Kim, Jin-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.107-114
    • /
    • 2007
  • The main aim of this study was to evaluate the bending and torsional behaviors of representative regular type cap beams in elevated guideway structures. A1/2 scale model copping beam, excluding the column portion, was designed, constructed, and tested. The copping beam was subjected to horizontal monotonic and cyclic loads with a constant vertical load over the loading stage. The damage was very much dominated by torsion. Experiment results showed that the spiral confinement in the beam helped to restrain the opening of torsional cracks in the column zone. Hence, the torsional strength of the cap beam contributesgreatly to the confinement conditions of the column.

The Prediction of Failure Load for an Unsymmetrically Stiffened Circular Composite Spar (비대칭으로 보강된 복합재 원형 스파의 파손하중 예측)

  • Kim, Sung Joon;Lee, Donggeon;Park, Sang Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.505-511
    • /
    • 2020
  • The circular composite tubes have been used as a main spar of HALE-UAV(High Altitude Long Endurance-Unmanned Air Vehicle). In this paper, an analytical model is presented for the prediction of the failure load of unsymmetrically stiffened circular spar using a modified Brazier approach. This model was used to predict the moment carrying capacity of the unsymmetrically stiffened circular spar. From the results, we can know that a stiffened cap placed in the top sector of a spar increased the bending capabilities. Four point bending tests were conducted to estimate the effect of the cap on the failure load and compared with the proposed model. And numerical simulations were performed to analyze the behavior of stiffened circular spar. Comparisons of the results from the proposed model with those from experiments and numerical modes show good correlation.

Laboratory Model Tests on the Load Transfer in Geosynthetic-Reinforced and Pile-Supported Embankment System (토목섬유보강 성토지지말뚝시스템에서의 하중전이 효과에 관한 모형실험)

  • Hong, Won-Pyo;Lee, Jae-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.9-18
    • /
    • 2010
  • A series of model tests were performed to investigate the load transfer by soil arching in geosynthetic-reinforced and pile-supported(GRPS) embankment systems. In the model tests, model piles with isolated cap were inserted in the model container and geosynthetics was laid on the pile caps below sand fills. The settlement of soft ground was simulated by rubber form. The loads acting on pile caps and the tensile strain of geosynthetics were monitored by data logging system. At the given interval ratio of pile caps, the efficiency in GRPS embankment systems increased with increasing the height of embankment fills, then gradually converged at constant value. Also, at the given height of embankment fills, the efficiency decreased with increasing the pile spacing. The embankment loads transferred on pile cap by soil arching increased when the geosynthetics installed with piles. This illustrated that reinforcing with the geosynthetics have a good effect to restraint the movement of surrounding soft grounds. The load transfer in GRPS embankment systems was affected by the interval ratio, height of fills, properties of grounds and tensile stiffness and so on.

  • PDF

Impact-resistant design of RC slabs in nuclear power plant buildings

  • Li, Z.C.;Jia, P.C.;Jia, J.Y.;Wu, H.;Ma, L.L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3745-3765
    • /
    • 2022
  • The concrete structures related to nuclear safety are threatened by accidental impact loadings, mainly including the low-velocity drop-weight impact (e.g., spent fuel cask and assembly, etc. with the velocity less than 20 m/s) and high-speed projectile impact (e.g., steel pipe, valve, turbine bucket, etc. with the velocity higher than 20 m/s), while the existing studies are still limited in the impact resistant design of nuclear power plant (NPP), especially the primary RC slab. This paper aims to propose the numerical simulation and theoretical approaches to assist the impact-resistant design of RC slab in NPP. Firstly, the continuous surface cap (CSC) model parameters for concrete with the compressive strength of 20-70 MPa are fully calibrated and verified, and the refined numerical simulation approach is proposed. Secondly, the two-degree freedom (TDOF) model with considering the mutual effect of flexural and shear resistance of RC slab are developed. Furthermore, based on the low-velocity drop hammer tests and high-speed soft/hard projectile impact tests on RC slabs, the adopted numerical simulation and TDOF model approaches are fully validated by the flexural and punching shear damage, deflection, and impact force time-histories of RC slabs. Finally, as for the two low-velocity impact scenarios, the design procedure of RC slab based on TDOF model is validated and recommended. Meanwhile, as for the four actual high-speed impact scenarios, the impact-resistant design specification in Chinese code NB/T 20012-2019 is evaluated, the over conservation of which is found, and the proposed numerical approach is recommended. The present work could beneficially guide the impact-resistant design and safety assessment of NPPs against the accidental impact loadings.

Closed-die Compaction of AZO Powder for FE Simulation of Powder Compaction (압분공정의 유한요소 해석을 위한 AZO 분말의 Closed-die Compaction 실험)

  • Kim, Y.B.;Lee, J.S.;Lee, S.M.;Park, H.J.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.228-233
    • /
    • 2012
  • In this study, powder compaction of AZO (alumina doped zinc oxide) powder was performed with a MTS 810 test system using a cylindrical die having a diameter of 10mm. Pressure-density curves were measured based on the load cell and displacement of the punch. The AZO powder compacts with various densities were formed to investigate the mechanical properties such as fracture stress of the AZO powder as a function of the compact density. Two types of compression tests were conducted in order to estimate the fracture stress using different loading paths: a diameteral compression test and a uniaxial compression test. The pressure-density curves of the AZO powder were obtained and the fracture stress of the compacted powders with various densities was estimated. The results show that the compact pressure dramatically increases as the density increases. Based on the experimental results, calibration of the modified Drucker-Prager/Cap model of the AZO powder for use in FE simulations was developed.

NEW TREND OF SCHEDULING IN LINEAR CONSTRUCTION PROJECT

  • S. Sankar;J. Senthil
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.917-923
    • /
    • 2005
  • Scheduling is one of the main functions in construction project to determine the sequence of activities necessary to complete a project. The scheduling techniques provide important information crucial to a project's success. Highway construction project the paving activity can be considered a linear activity. Linear scheduling technique may be better suited for linear projects than other scheduling techniques. A new type of scheduling in linear project is calling Linear Scheduling Model (LSM). The Project monitoring and controlling is very ease to identify that all the stage of linear project and have more advantages.

  • PDF

Model Tests on Embankment Piles with Isolated Pile Caps (단독캡을 사용한 성토지지말뚝에 대한 모형실험)

  • 홍원표;이광우
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.49-59
    • /
    • 2003
  • The factors affecting the vertical loads acting on embankment piles can be classified into two factors on pile and soil. Factor on pile is the space between pile cap and factors on soil are embankment height and soil parameters(c, $\phi$). Therefore, a series of model tests were performed both to investigate the extent of influence of these factors and to verify the reliability of the proposed theoretical analysis. In the model tests, the piles were installed in the 6 columns $\times$ 6 rows(or 5 columns $\times$ 5 rows) below the embankment and the isolated pile caps with the area of 2.5cm $\times$ 2.5cm were installed on each pile head. The portion of the embankment load carried by model pile caps decreases with increment of the space between pile caps and increases with increment of the embankment height and the relative density(or internal friction angle) of fill. Also, the experimental results showed good agreement with theoretical predictions.