• Title/Summary/Keyword: Candidate Images

Search Result 415, Processing Time 0.026 seconds

Knowledge Based Automated Boundary Detection for Quantifying of Left Ventricular Function in Low Contrast Angiographic Images (저대조 혈관 조영상에서 좌심실 기능의 정량화를 위한 지식 기반의 경계선 자동검출)

  • 전춘기;권용무
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.109-120
    • /
    • 1996
  • Cardiac function is evaluated quantitatively using angiographic images via the analysis of the shape change or the heart wall boundaries. To kin with, boundary defection or ESLV(End Systolic Lert Ventricular) and EDLV(End Diastolic Left Ventricular) is essential for the quantitative analysis of cardiac function. The boundary detection methods proposed in the past were almost semi-automatic. Intervention by a knowledgeable human operator was still required Of con, manual tracing of the boundaries is currently used for subsequent analysis and diagnosis. This method would not cut excessive time, labor, and subjectivity associated with manual intervention by a human operator. EDLV images have noncontiguous and ambiguous edge signal on some boundary regions. In this paper, we propose a new method for automated detection of boundaries in noncontiguous and ambiguous EDLV images. The boundary detection scheme which based on a priori knowledge information is divided into two steps. The first step is to detect the candidate edge points of EDLV using ESLV boundaries. The second step is to correct detected boundaries of EDLV using the LV shape. We developed the algorithm of modifying EDLV boundaries defined adaptive modifier. We experimented the method proposed in this paper and compared our proposed method with the manual method in detecting boundaries of EDLV. In the areas within estimated boundaries of EDLV, the percentage of error was about 1.4%. We verified the useflilness and obtained the satisfying results througll the experiments of the proposed method.

  • PDF

Autonomous vision-based damage chronology for spatiotemporal condition assessment of civil infrastructure using unmanned aerial vehicle

  • Mondal, Tarutal Ghosh;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.733-749
    • /
    • 2020
  • This study presents a computer vision-based approach for representing time evolution of structural damages leveraging a database of inspection images. Spatially incoherent but temporally sorted archival images captured by robotic cameras are exploited to represent the damage evolution over a long period of time. An access to a sequence of time-stamped inspection data recording the damage growth dynamics is premised to this end. Identification of a structural defect in the most recent inspection data set triggers an exhaustive search into the images collected during the previous inspections looking for correspondences based on spatial proximity. This is followed by a view synthesis from multiple candidate images resulting in a single reconstruction for each inspection round. Cracks on concrete surface are used as a case study to demonstrate the feasibility of this approach. Once the chronology is established, the damage severity is quantified at various levels of time scale documenting its progression through time. The proposed scheme enables the prediction of damage severity at a future point in time providing a scope for preemptive measures against imminent structural failure. On the whole, it is believed that the present study will immensely benefit the structural inspectors by introducing the time dimension into the autonomous condition assessment pipeline.

Content Based Image Retrieval System using Histogram Intersection and Autocorrelogram (히스토그램 인터섹션과 오토코릴로그램을 이용한 내용기반 영상검색 시스템)

  • 송석진;김효성;이희봉;남기곤
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • In this paper, when users choose a query image, we implemented a content-based image retrieval system that users can simply choose and extract a object region of query wanted with not only a whole image but various objects in it. Histogram is obtained by improved HSV transformations from query image and then candidate images are retrieved rapidly by a 1st similarity measure with histogram intersection using representative colors of query image. And finally retrieved images are extracted since 2nd similarity measure with banded autocorrelogram is performed so that recall and precision are improved by combining two retrieval methods that can make up for respective weak points. Moreover images in the database are indexed automatically within feature library that makes possible to retrieve images rapidly.

  • PDF

Deepfake Image Detection based on Visual Saliency (Visual Saliency 기반의 딥페이크 이미지 탐지 기법)

  • Harim Noh;Jehyeok Rew
    • Journal of Platform Technology
    • /
    • v.12 no.1
    • /
    • pp.128-140
    • /
    • 2024
  • 'Deepfake' refers to a video synthesis technique that utilizes various artificial intelligence technologies to create highly realistic fake content, causing serious confusion to individuals and society by being used for generating fake news, fraud, malicious impersonation, and more. To address this issue, there is a need for methods to detect malicious images generated by deepfake accurately. In this paper, we extract and analyze saliency features from deepfake and real images, and detect candidate synthesis regions on the images, and finally construct an automatic deepfake detection model by focusing on the extracted features. The proposed saliency feature-based model can be universally applied in situations where deepfake detection is required, such as synthesized images and videos. To demonstrate the performance of our approach, we conducted several experiments that have shown the effectiveness of the deepfake detection task.

  • PDF

Robust Skyline Extraction Algorithm For Mountainous Images (산악 영상에서의 지평선 검출 알고리즘)

  • Yang, Sung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.35-40
    • /
    • 2010
  • Skyline extraction in mountainous images which has been used for navigation of vehicles or micro unmanned air vehicles is very hard to implement because of the complexity of skyline shapes, occlusions by environments, dfficulties to detect precise edges and noises in an image. In spite of these difficulties, skyline extraction is avery important theme that can be applied to the various fields of unmanned vehicles applications. In this paper, we developed a robust skyline extraction algorithm using two-scale canny edge images, topological information and location of the skyline in an image. Two-scale canny edge images are composed of High Scale Canny edge image that satisfies good localization criterion and Low Scale Canny edge image that satisfies good detection criterion. By applying each image to the proper steps of the algorithm, we could obtain good performance to extract skyline in images under complex environments. The performance of the proposed algorithm is proved by experimental results using various images and compared with an existing method.

Face Detection Using Adaboost and Template Matching of Depth Map based Block Rank Patterns (Adaboost와 깊이 맵 기반의 블록 순위 패턴의 템플릿 매칭을 이용한 얼굴검출)

  • Kim, Young-Gon;Park, Rae-Hong;Mun, Seong-Su
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.437-446
    • /
    • 2012
  • A face detection algorithms using two-dimensional (2-D) intensity or color images have been studied for decades. Recently, with the development of low-cost range sensor, three-dimensional (3-D) information (i.e., depth image that represents the distance between a camera and objects) can be easily used to reliably extract facial features. Most people have a similar pattern of 3-D facial structure. This paper proposes a face detection method using intensity and depth images. At first, adaboost algorithm using intensity image classifies face and nonface candidate regions. Each candidate region is divided into $5{\times}5$ blocks and depth values are averaged in each block. Then, $5{\times}5$ block rank pattern is constructed by sorting block averages of depth values. Finally, candidate regions are classified as face and nonface regions by matching the constructed depth map based block rank patterns and a template pattern that is generated from training data set. For template matching, the $5{\times}5$ template block rank pattern is prior constructed by averaging block ranks using training data set. The proposed algorithm is tested on real images obtained by Kinect range sensor. Experimental results show that the proposed algorithm effectively eliminates most false positives with true positives well preserved.

Real-time Small Target Detection using Local Contrast Difference Measure at Predictive Candidate Region (예측 후보 영역에서의 지역적 대비 차 계산 방법을 활용한 실시간 소형 표적 검출)

  • Ban, Jong-Hee;Wang, Ji-Hyeun;Lee, Donghwa;Yoo, Joon-Hyuk;Yoo, Seong-eun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.2
    • /
    • pp.1-13
    • /
    • 2017
  • In This Paper, we find the Target Candidate Region and the Location of the Candidate Region by Performing the Morphological Difference Calculation and Pixel Labeling for Robust Small Target Detection in Infrared Image with low SNR. Conventional Target Detection Methods based on Morphology Algorithms are low in Detection Accuracy due to their Vulnerability to Clutter in Infrared Images. To Address the Problem, Target Signal Enhancement and Background Clutter Suppression are Achieved Simultaneously by Combining Moravec Algorithm and LCM (Local Contrast Measure) Algorithm to Classify the Target and Noise in the Candidate Region. In Addition, the Proposed Algorithm can Efficiently Detect Multiple Targets by Solving the Problem of Limited Detection of a Single Target in the Target Detection method using the Morphology Operation and the Gaussian Distance Function Which were Developed for Real time Target Detection.

Detection of Harmful Images Based on Color and Geometrical Features (색상과 기하학적인 특징 기반의 유해 영상 탐지)

  • Jang, Seok-Woo;Park, Young-Jae;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5834-5840
    • /
    • 2013
  • Along with the development of high-speed, wired and wireless Internet technology, various harmful images in a form of photos and video clips have become prevalent these days. In this paper, we suggest a method of automatically detecting adult images by extracting woman's nipple areas which represent obscenity of the image. The suggested algorithm first segments skin color areas in the $YC_bC_r$ color space from input images and extracts nipple's candidate areas from the segmented skin areas through the suggested nipple map. We then select real nipple areas by using geometrical information and determines input images as harmful images if they contain nipples. Experimental results show that the suggested nipple map-based method effectively detects adult images.

Face Detction Using Face Geometry (얼굴 기하에 기반한 얼굴 검출 알고리듬)

  • 류세진;은승엽
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.49-52
    • /
    • 2002
  • This paper presents a fast algorithm for face detection from color images on internet. We use Mahalanobis distance between standard skin color and actual pixel color on IQ color space to segment skin color regions. The skin color regions are the candidate face region. Further, the locations of eyes and mouth regions are found by computing average pixel values on horizontal and vertical pixel lines. The geometry of mouth and eye locations is compared to the standard face geometry to eliminate false face regions. Our Method is simple and fast so that it can be applied to face search engine for internet.

  • PDF

Text Detection based on Edge Enhanced Contrast Extremal Region and Tensor Voting in Natural Scene Images

  • Pham, Van Khien;Kim, Soo-Hyung;Yang, Hyung-Jeong;Lee, Guee-Sang
    • Smart Media Journal
    • /
    • v.6 no.4
    • /
    • pp.32-40
    • /
    • 2017
  • In this paper, a robust text detection method based on edge enhanced contrasting extremal region (CER) is proposed using stroke width transform (SWT) and tensor voting. First, the edge enhanced CER extracts a number of covariant regions, which is a stable connected component from input images. Next, SWT is created by the distance map, which is used to eliminate non-text regions. Then, these candidate text regions are verified based on tensor voting, which uses the input center point in the previous step to compute curve salience values. Finally, the connected component grouping is applied to a cluster closed to characters. The proposed method is evaluated with the ICDAR2003 and ICDAR2013 text detection competition datasets and the experiment results show high accuracy compared to previous methods.