• Title/Summary/Keyword: Cancer Cell Lines

Search Result 1,732, Processing Time 0.027 seconds

Modulation of P-glycoprotein Activity by Flavonoids in Human Uterine Sarcoma Cells (인체 자궁암 세포에서 플라보노이드에 의한 P-당단백질의 활성 조절)

  • Go, Eun-Jung;Chung, Soo-Yeon;Kim, Na-Hyung;Lee, Hwa-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.4
    • /
    • pp.305-310
    • /
    • 2003
  • One of the possible mechanisms of multi-drug resistance found in cancer cells is the over-expression of P­glycoprotein (P-gp). Studies have shown that compounds in plants including vegetables and fruits not only have anticancer activities but may also modulate P-gp activity. The effect of flavonoids and organic isothiocyanate on P-gp activity was studied in human uterine sarcoma cell lines, MES-SA (sensitive) and MES-SA/DX5 (resistant) cells. The accumulation of daunomycin (DNM), a P-gp substrate, was approximately 10 times greater in the sensitive cell as compared to the resistant cells over the entire time course (up to 2 hours). The positive control, verapamil increased the two hour accumulation of DNM while quercetin decreased that of DNM in the resistant cells. 1-Naphtyl-isothiocyanate (NITC) showed no effect on the two hour accumulation of DNM. The $IC_{50}$ values for DNM in the resistant cells was about 20 times higher than that observed in the sensitive cells $(10.1{\pm}1.7\;{\mu}M\;vs.\;0.58{\pm}0.28\;{\mu}M)$. Verapamil reduced the $IC_{50}$ value for DNM whereas flavonoids (quercetin and fisetin) increased those for DNM in the resistant cells.

Vesicular Stomatitis Virus G Glycoprotein and ATRA Enhanced Bystander Killing of Chemoresistant Leukemic Cells by Herpes Simplex Virus Thymidine Kinase/Ganciclovir

  • Hu, Chenxi;Chen, Zheng;Zhao, Wenjun;Wei, Lirong;Zheng, Yanwen;He, Chao;Zeng, Yan;Yin, Bin
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.114-121
    • /
    • 2014
  • Refractoriness of acute myeloid leukemia (AML) cells to chemotherapeutics represents a major clinical barrier. Suicide gene therapy for cancer has been attractive but with limited clinical efficacy. In this study, we investigated the potential application of herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) based system to inhibit chemoresistant AML cells. We first generated Ara-C resistant K562 cells and doxorubicin-resistant THP-1 cells. We found that the HSV-TK/GCV anticancer system suppressed drug resistant leukemic cells in culture. Chemoresistant AML cell lines displayed similar sensitivity to HSV-TK/GCV. Moreover, HSV-TK/GCV killing of leukemic cells was augmented to a mild but significant extent by all-trans retinoic acid (ATRA) with concomitant upregulation of Connexin 43, a major component of gap junctions. Interestingly, HSV-TK/GCV killing was enhanced by expression of vesicular stomatitis virus G glycoprotein (VSV-G), a fusogenic membrane protein, which also increased leukemic cell fusion. Co-culture resistant cells expressing HSV-TK and cells stably transduced with VSV-G showed that expression of VSV-G could promote the bystander killing effect of HSV-TK/GCV. Furthermore, combination of HSV-TK/GCV with VSV-G plus ATRA produced more pronounced antileukemia effect. These results suggest that the HSV-TK/GCV system in combination with fusogenic membrane proteins and/or ATRA could provide a strategy to mitigate the chemoresistance of AML.

Evaluation of Cell Cytotoxicity on the extractives of Magnoliaceae (목련과 수목의 추출성분에 대한 세포독성평가)

  • 김영균;고영남;김용만;양현옥
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.2
    • /
    • pp.1-8
    • /
    • 2001
  • The 90% methanol extracts of eight magnoliaceae plants were collected and tested the cytotoxicity against SK-OV-3 and SiHa cells. Also six pure compounds such as magnonol, honokiol, dihydroxybiphenyl ether, linodenine, anonaine, asimilobine which were previously isolated from Magnolia obovata Thunb. were evaluated the cytotoxicities and their mechanism study using the Lactate dehydrogenase assay(LDH) and FACScan analysis system. Of the tested six compounds, magnonol, honokiol, dihydroxybiphenyl ether showed high cytotoxicities against human cancer cell lines, SK-OV-3 and SiHa cells. In addition, one of the plausible mechanisms of their antitumor activities suggested that they could induce the early stage of apoptosis. For the quantitative analysis, the methanol extractives were fractionated with chloroform, ethylacetate, $H_2O$ and then the ethylacetate fraction was chromatographed on silica gel using n-Hexane ; Acetone(4:1, v/v) as eluent. This fraction was subjected for the quantitative analysis in the HPLC system. The result suggested that the methanol extractives of Magnolia obovata Thunb. contained with magnonol, honokiol, dihydroxybiphenyl ether, 0.9%, 0.3% and 0.24%, respectively.

  • PDF

Antitumor activity of Bacillus subtilis SW-1 isolated from Jeotgal (젓갈에서 분리한 Bacillus subtilis SW-1의 항암활성)

  • 박종기;조용운;최영우;정영기;갈상완
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.815-820
    • /
    • 2004
  • A bacterum containing antitumor activity was isolated from traditional korean food, Jeotgal. Through the 16s rRNA sequence analysis, the bacterium was identitied as a strain of Bacillus subtilis SW-l. The best culture condition for antitumor activity of the bacterium is 3% of soluble starch and 1 % of yeast extract as corbon and nitrogen sources, respectively. Cytotoxicitic concentrations of the culture supernatant of B. subtilis SW-1 against cancer cell lines, A549 and SK-OV3 were 30 ul/ml and 40 ul/ml, respectively, as $IC_{50}$/ values. In DNA fragmentation assay, the culture supernatant showed the programmed cell death (apoptosis) to cause degrading the chromosomal DNA like ladder. Taken together, the culture supernatant of the B. subtilis SW-1 has some possibility to be used as an antitumor agent.

Comparison of Biological Activities on Rehmannia Radix and R. Radix Preparata produced in Korea (국내산 건지황과 숙지황의 생리활성 비교)

  • Ahn, Sang-Wook;Kim, Young-Gil;Kim, Min-Hae;Lee, Hyeon-Yong;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.4
    • /
    • pp.257-262
    • /
    • 1999
  • We investigated the biological activities on ethanol extracts of R. glutinosa and R. glutinosa Preparata. The result of anti-mutagenicity suggested that the ethanol extract of R. glutinosa Preparata showed stronger activity than that of R. glutinosa ethanol extract. All of the ethanol extracts showed over 50% growth inhibition of several cancer cell lines. Especially, 61% of the cell growth of Hep3B was inhibited by adding 1g/ l of ethanol extract of R. glutinosa Preparata. In hypoglycemic activities and controlling blood pressure, 63.69% of ${\alpha}-glucosidase$ and 56.58% of ACE activities were inhibited by adding 1g/ l of ethanol extract of R. glutinosa Preparata. In general, the ethanol extract of R. glutinosa Preparata showed higher biological activities than those of R. glutinosa.

  • PDF

Radiation Induced $G_2$ Chromatid Break and Repair Kinetics in Human Lymphoblastoid Cells (인체 임파양세포에서 $G_2$기 염색체의 방사선 감수성)

  • Seong, Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.193-203
    • /
    • 1993
  • In understanding radiosensitivity a new concept of inherent radiosensitivity based on individuality and heterogeneity within a population has recently been explored. There has been some discussion of possible mechanism underlying differences in radiosensitivity between cells. Ataxia telangiectasia (AT), a rare autosomal recessive genetic disorder, is characterized by hypersensitivity to ionizing radiation and other DNA damaging agents at the cellular level. There have been a lot of efforts to describe the cause of this hypersensitivity to radiation. At the cellular level, chromosome repair kinetics study would be an appropriate approach. The purpose of this study was to better understand radiosensitivity En an approach to investigate kinetics of induction and repair of $G_2$ chromatic bleaks using normal, AT heterozygous (ATH), and AT homozygous lymphoblastoid cell lines. In an attempt to estimate initial damage, $9-{\beta}-D-arabinosyl-2-fluoroadenine,$ an inhibitor of DNA synthesis and repair, was used in this study. It was found from this study that radiation induces higher chromatid breaks in AT than in normal and ATH cells. There was no significant differences of initial chromatid breaks between normal and ATH cells. Repair kinetics was the same for all. So the higher level of breaks in AT $G_2$ cells is thought to be a reflection of the increased initial damage. The amount of initial damage correlated well with survival fraction at 2 Gy of cell survival curve following radiation. Therefore, the difference of radiosensitivity in terms of $G_2$ chromosomal sensitivity is thought to result from the difference of initial damage.

  • PDF

Antitumor Activities of Spray-dried Powders with Different Molecular Masses Fractionated from the Crude Protein-bound Polysaccharide Extract of Agaricus blazei Murill

  • Hong, Joo-Heon;Kim, Seok-Joong;Ravindra, Pogaku;Youn, Kwang-Sup
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.600-604
    • /
    • 2007
  • In this study, we first prepared 3 kinds of powders with different molecular masses from the crude protein-bound polysaccharide extract of Agraricus blazei Murill through ultrafiltration, followed by spray-drying. Then, the antitumor activities of the powders were analyzed. Size exclusion chromatography coupled with a multi-angle laser-light-scattering system showed the 3 powders had the following molecular ranges: below 10 kDa (SD-1), 10 to 150 kDa (SD-2), and above 150 kDa (SD-3), representing peak molecular weights of $8.26{\times}10^3,\;9.65{\times}10^4$, and $5.94{\times}10^6\;g/mol$, respectively. All the powders stimulated macrophage RAW264.7 cells to produce nitric oxide, of which SD-2 and SD-3 were superior to the crude extract powder (CP-SD), while SD-1 showed the lowest activity. Similar results were found for their cytotoxicities against human cancer cell lines (A549, MCF-7, and AGS), where the highest activity was obtained with the SD-2 treatment for 72 hr at $1,000\;{\mu}g/mL$. The MCF-7 cell line was less sensitive to the powders than the other cells. From this research we found that ultrafiltration, in combination with spray-drying, is applicable for preparing protein-bound polysaccharide powders with higher antitumor activities.

Inhibition of DNMT3B and PI3K/AKT/mTOR and ERK Pathways as a Novel Mechanism of Volasertib on Hypomethylating Agent-Resistant Cells

  • Eun-Ji Choi;Bon-Kwan Koo;Eun-Hye Hur;Ju Hyun Moon;Ji Yun Kim;Han-Seung Park;Yunsuk Choi;Kyoo-Hyung Lee;Jung-Hee Lee;Eun Kyung Choi;Je-Hwan Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.319-329
    • /
    • 2023
  • Resistance to hypomethylating agents (HMAs) in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) is a concerning problem. Polo-like kinase 1 (PLK1) is a key cell cycle modulator and is known to be associated with an activation of the PI3K pathway, which is related to the stabilization of DNA methyltransferase 1 (DNMT1), a target of HMAs. We investigated the effects of volasertib on HMA-resistant cell lines (MOLM/AZA-1 and MOLM/DEC-5) derived from MOLM-13, and bone marrow (BM) samples obtained from patients with MDS (BM blasts >5%) or AML evolved from MDS (MDS/AML). Volasertib effectively inhibited the proliferation of HMA-resistant cells with suppression of DNMTs and PI3K/AKT/mTOR and ERK pathways. Volasertib also showed significant inhibitory effects against primary BM cells from patients with MDS or MDS/AML, and the effects of volasertib inversely correlated with DNMT3B expression. The DNMT3B-overexpressed AML cells showed primary resistance to volasertib treatment. Our data suggest that volasertib has a potential role in overcoming HMA resistance in patients with MDS and MDS/AML by suppressing the expression of DNMT3 enzymes and PI3K/AKT/mTOR and ERK pathways. We also found that DNMT3B overexpression might be associated with resistance to volasertib.

Antagonistic Potentiality of Actinomycete-Derived Extract with Anti-Biofilm, Antioxidant, and Cytotoxic Capabilities as a Natural Combating Strategy for Multidrug-Resistant ESKAPE Pathogens

  • Mohamed H. El-Sayed;Fahdah A. Alshammari;Mohammed H. Sharaf
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • The global increase in multidrug-resistant (MDR) bacteria has inspired researchers to develop new strategies to overcome this problem. In this study, 23 morphologically different, soil-isolated actinomycete cultures were screened for their antibacterial ability against MDR isolates of ESKAPE pathogens. Among them, isolate BOGE18 exhibited a broad antibacterial spectrum, so it was selected and identified based on cultural, morphological, physiological, and biochemical characteristics. Chemotaxonomic analysis was also performed together with nucleotide sequencing of the 16S rRNA gene, which showed this strain to have identity with Streptomyces lienomycini. The ethyl acetate extract of the cell-free filtrate (CFF) of strain BOGE18 was evaluated for its antibacterial spectrum, and the minimum inhibitory concentration (MIC) ranged from 62.5 to 250 ㎍/ml. The recorded results from the in vitro anti-biofilm microtiter assay and confocal laser scanning microscopy (CLSM) of sub-MIC concentrations revealed a significant reduction in biofilm formation in a concentration-dependent manner. The extract also displayed significant scavenging activity, reaching 91.61 ± 4.1% and 85.06 ± 3.14% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. A promising cytotoxic ability against breast (MCF-7) and hepatocellular (HePG2) cancer cell lines was obtained from the extract with IC50 values of 47.15 ± 13.10 and 122.69 ± 9.12 ㎍/ml, respectively. Moreover, based on gas chromatography-mass spectrometry (GC-MS) analysis, nine known compounds were detected in the BOGE18 extract, suggesting their contribution to the multitude of biological activities recorded in this study. Overall, Streptomyces lienomycini BOGE18-derived extract is a good candidate for use in a natural combating strategy to prevent bacterial infection, especially by MDR pathogens.

Tumor Suppressor Protein p53 Promotes 2-Methoxyestradiol-Induced Activation of Bak and Bax, Leading to Mitochondria-Dependent Apoptosis in Human Colon Cancer HCT116 Cells

  • Lee, Ji Young;Jee, Su Bean;Park, Won Young;Choi, Yu Jin;Kim, Bokyung;Kim, Yoon Hee;Jun, Do Youn;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1654-1663
    • /
    • 2014
  • To examine the effect of tumor suppressor protein p53 on the antitumor activity of 2-methoxyestradiol (2-MeO-$E_2$), 2-MeO-$E_2$-induced cell cycle changes and apoptotic events were compared between the human colon carcinoma cell lines HCT116 ($p53^{+/+}$) and HCT116 ($p53^{-/-}$). When both cell types were exposed to 2-MeO-$E_2$, a reduction in the cell viability and an enhancement in the proportions of $G_2/M$ cells and apoptotic sub-$G_1$ cells commonly occurred dose-dependently. These 2-MeO-$E_2$-induced cellular changes, except for $G_2/M$ arrest, appeared to be more apparent in the presence of p53. Immunofluorescence microscopic analysis using anti-${\alpha}$-tubulin and anti-lamin B2 antibodies revealed that after 2-MeO-$E_2$ treatment, impaired mitotic spindle network and prometaphase arrest occurred similarly in both cell types. Following 2-MeO-$E_2$ treatment, only HCT116 ($p53^{+/+}$) cells exhibited an enhancement in the levels of p53, p-p53 (Ser-15), $p21^{WAF1/CIP1}$, and Bax; however, the Bak level remained relatively constant in both cell types, and the Bcl-2 level decreased only in HCT116 ($p53^{+/+}$) cells. Additionally, mitochondrial apoptotic events, including the activation of Bak and Bax, loss of ${\Delta}{\psi}m$, activation of caspase-9 and -3, and cleavage of lamin A/C, were more dominantly induced in the presence of p53. The Bak-specific and Bax-specific siRNA approaches confirmed the necessity of both Bak and Bax activations for the 2-MeO-$E_2$-induced apoptosis in HCT116 cells. These results show that among 2-MeO-$E_2$-induced apoptotic events, including prometaphase arrest, up-regulation of Bax level, down-regulation of Bcl-2 level, activation of both Bak and Bax, and mitochondria-dependent caspase activation, the modulation of Bax and Bcl-2 levels is the target of the pro-apoptotic action of p53.