• Title/Summary/Keyword: Cancer Cell Lines

Search Result 1,732, Processing Time 0.038 seconds

Isolation and Identification of Pheophytin, a Photosensitizer from Nostoc commune that Induces Apoptosis in Leukemia and Cancer Cells (Nostoc commune으로부터 백혈병세포와 간암세포에 대한 apoptosis 유도 광과민성물질 pheophytin a의 분리 및 구조동정)

  • Park, Jae-Eun;Lee, Jun-Young;Lee, Min-Woo;Jang, Eun-Jin;Hong, Chang-Oh;Kim, Keun Ki
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1321-1331
    • /
    • 2018
  • The aim of this study was to separate the photosensitizer that induces apoptosis of U937 and SK-HEP-1 cells from Nostoc commune. Dried N. commune was extracted with $CH_2Cl_2/MeOH$ (1:1) to separate the photosensitizer using various chromatographic techniques. The isolated compound was identified as pheophytin a ($C_{55}H_{74}N_4O_5$) with a molecular weight of 870. Its photodynamic activities were assessed under different irradiation conditions (light and non-light) at the same concentration range of $1.15-23.0{\mu}M$. The apoptosis inducing activity in U937 or SK-HEP-1 cells appeared only in the light. The mechanisms underlying the pheophytin a-mediated photodynamic inhibition of cancer cells were further investigated by examining cell morphology changes, cytotoxicity, caspase-3/7 activity, fluorescence staining, flow cytometry analysis, and DNA fragmentation in these two cell lines. The positive control and the light irradiation group showed typical apoptotic responses, including morphological changes, cytotoxicity, caspase activity, nucleus shrinkage owing to chromatin condensation, DNA laddering, and the presence of apoptotic bodies. Cytotoxicity markedly increased in a dose-dependent manner after a 12 hr exposure. Caspase-3/7 activity was higher in U937 cells than in SK-HEP-1 cells. Apoptosis induction therefore appeared to be both concentration- and light-dependent. In conclusion, pheophytin a, isolated from the blue green alga N. commune, had a photodynamic apoptosis-inducing effect on U937 and SK-HEP-1 cells. The findings reported here can be used as basic data for the development of next-generation photosensitizers from N. commune.

Antioxidant and Cytotoxic Activities of Hot Water and Ethanol Extracts From Caesalpinia sappan (소목의 열수 및 에탄올 추출물의 항산화 및 항암활성)

  • Park, Mi-Hye;Kim, Bumsik
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • Caesalpinia sappan L. is an oriental medicinal plant distributed in the Asia Pacific region including India, Malaysia, and China. The dried heartwood of Caesalpinia sappan has been traditionally used as an analgesic and anti-inflammatory drug. In this study, the effects of extract methods of C. sappan on contents of total polyphenols and flavonoids, antioxidant activity, and cytotoxic activity were evaluated. As a result, hot water extract from C. sappan (CSWE) significantly exhibited contents of total polyphenols and flavonoids (22.6 mg GAE/g and 14.5 mg QE/g) higher than 70% ethanol extract (CSEE) (17.6 mg GAE/g and 13.2 mg QE/g). However, CSEE showed greater antioxidant activity than CSWE in both DPPH and ABTS. Also, the cytotoxicity of C. sappan against three kinds of cancer cell lines was higher in CSEE than in CSWE. These results show that ethanol extract is a better extract method than hot water method to maintain antioxidant and anti-cancer activities.

Enhancement of Anticancer Activity of Acer mono Aqueous Extracts by Nano-Encapsulation Process (고로쇠 수피 수용성 추출물의 나노입자화를 통한 항암활성 증진)

  • Kim, Ji-Seon;Jeong, Myoung-Hoon;Choi, Woon-Yong;Seo, Yong-Chang;Cho, Jeong Sub;Lee, Hyeon Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.14-24
    • /
    • 2011
  • Anticancer activity of Acer mono aqueous extracts was enhanced by nano-encapsulation process of gelatin. The cytotoxicity on human normal lung cell (HEL299) of the extracts from WE (water extract at 100) showed 23.51%, lower than that from NE (nano-encapsulatioin of water extract of Acer mono) in adding the maximum concentration of 1.0 mg/mL. NE showed more potent scavenging effect as 73.15% than the WE. On SOD-like test, the NE showed highest activity as 32.33% at 1.0 mg/mL concentration. Human stomach adenocarcinoma, liver adenocarcinoma, breast adenocarcinoma and lung adenocarcinoma cell growth were inhibited up to about 59-73%, in adding 1.0 mg/mL of NE. NE was 15% higher than conventional water extraction. Among several cancer cell lines (stomach adenocarcinoma, liver adenocarcinoma), the growth of digestive related cancer cells were most effectively inhibited as about 71-73%. The size of nano particles was in the ranges of 100-200 nm, which can effectively the penetrate into the cells, it was observed by real time confocal microscope. It tells that the aqueous extracts of Acer mono bark could be definitely enhanced by nano-encapsulation process.

β-elemene Induces Caspase-dependent Apoptosis in Human Glioma Cells in vitro through the Upregulation of Bax and Fas/FasL and Downregulation of Bcl-2

  • Li, Chen-Long;Chang, Liang;Guo, Lin;Zhao, Dan;Liu, Hui-Bin;Wang, Qiu-Shi;Zhang, Ping;Du, Wen-Zhong;Liu, Xing;Zhang, Hai-Tao;Liu, Yang;Zhang, Yao;Xie, Jing-Hong;Ming, Jian-Guang;Cui, Yu-Qiong;Sun, Ying;Zhang, Zhi-Ren;Jiang, Chuan-Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10407-10412
    • /
    • 2015
  • Background: ${\beta}$-elemene, extracted from herb medicine Curcuma wenyujin has potent anti-tumor effects in various cancer cell lines. However, the activity of ${\beta}$-elemene against glioma cells remains unclear. In the present study, we assessed effects of ${\beta}$-elemene on human glioma cells and explored the underlying mechanism. Materials and Methods: Human glioma U87 cells were used. Cell proliferation was determined with MTT assay and colony formation assay to detect the effect of ${\beta}$-elemene at different doses and times. Fluorescence microscopy was used to observe cell apoptosis with Hoechst 33258 staining and change of glioma apoptosis and cell cycling were analyzed by flow cytometry. Real-time quantitative PCR and Western-blotting assay were performed to investigated the influence of ${\beta}$-elemene on expression levels of Fas/FasL, caspase-3, Bcl-2 and Bax. The experiment was divided into two groups: the blank control group and ${\beta}$-elemne treatment group. Results: With increase in the concentration of ${\beta}$-elemene, cytotoxic effects were enhanced in the glioma cell line and the concentration of inhibited cell viability ($IC_{50}$) was $48.5{\mu}g/mL$ for 24h. ${\beta}$-elemene could induce cell cycle arrest in the G0/G1 phase. With Hoechst 33258 staining, apoptotic nuclear morphological changes were observed. Activation of caspase-3,-8 and -9 was increased and the pro-apoptotic factors Fas/FasL and Bax were upregulated, while the anti-apoptotic Bcl-2 was downregulated after treatment with ${\beta}$-elemene at both mRNA and protein levels. Furthermore, proliferation and colony formation by U87 cells were inhibited by ${\beta}$-elemene in a time and does-dependent manner. Conclusions: Our results indicate that ${\beta}$-elemene inhibits growth and induces apoptosis of human glioma cells in vitro. The induction of apoptosis appears to be related with the upregulation of Fas/FasL and Bax, activation of caspase-3,-8 and -9 and downregulation of Bcl-2, which then trigger major apoptotic cascades.

Effects of 3,5-di-O-Caffeoylquinic acid from Artemisia scoparia Waldstein et Kitamura on the Function of HPV 16 Oncoproteins (인진에서 분리한 3,5-di-O-Caffeoylquinic acid가 자궁경부암 바이러스 발암단백질의 기능에 미치는 영향)

  • Baek, Tae-Woong;Lee, Kyung-Ae;Ahn, Min-Jung;Joo, Hae-Kyung;Cho, Min-Chul;Kang, Jung-Woo;Kim, Hee-Seo;Shim, Jung-Hyun;Lee, Hee-Gu;Oh, Hyun-Cheol;Ahn, Jong-Seok;Cho, Yong-Kwen;Myung, Pyung-Keun;Yoon, Do-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.4 s.139
    • /
    • pp.368-374
    • /
    • 2004
  • Cervical cancer is one of the leading causes of female death. Viral oncoproteins E6 and E7 are selectively retained and expressed in carcinoma cells infected with HPV (Human papillomavirus) type 16. The HPV is cooperated in immotalization and transformation of primary keratinocyte. E6 and E7 oncoproteins interfere the functions of tumor suppressor proteins p53 and retinoblasoma protein (pRb), respectively. Among a lots of natural products, Artemisia scoparia Waldstein et Kitamura has inhibitory effects on the binding between E6 oncoprotein and tumor suppressor p53, or the binding between E6 and E6 associated protein (E6AP), an E3 ubiquitin-protein ligase. HPV oncoprotein inhibitors from Artemisia scoparia W. were isolated by solvent partition and column chromatography (Silica gel, RP-18) and the inhibitory compounds were finally purified by HPLC using an ELISA screening system based on the binding between E6 and E6AP. The aim of this study is to identify the structure of inhibitory compounds and to investigate whether these compounds have inhibitory effects on the functions of E6 oncoprotein. We investigated whether 3,5-di-O-caffeoylquinic acid (DCQA) extracted from Artemisia scoparia W. Could inhibit the function of E6 oncoprutein. DCQA inhibited the in vitro binding of E6 and E6AP which are essential for the binding and degradation of the tumor suppressor p53 and also inhibited the proliferation of human cervical cancer cell lines (SiHa and CaSKi) in a dose response manner. These results suggest that DCQA inhibited the function of E6 oncoprotein, suggesting that it can be used as a potential drug for the treatment of cervical cancers infected with HPV.

A Study on Antitumor Effect and Mechanism of Cortex ulmi pumilae Water Extract on HepG2 Hepatoma cell (유근피(楡根皮) 추출액(抽出液)이 HeoG2 간암세포(肝癌細胞)에 미치는 항암효과(抗癌效果) 및 기전(機轉)에 대(對)한 연구(硏究))

  • Choi, Su-Deock;Park, Young-Kweon;Kim, Gang-San;Kang, Byung-Ki;Han, Sang-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.259-266
    • /
    • 2000
  • Objectives : The effects of aqueous extracts of Cortex ulmi pumilae (a traditional medicine for cancer treatment in oriental medicine) on the induction of apoptotic cell death were investigated in human liver origm hepatoma cell lines, HepG2. Methods : The death of HepG2 cells was markedly induced by the addition of extracts of Cortex ulmi pumilae in a dose-dependent manner. The apoptotic characteristic ladder pattern of DNA strand break was not observed in cell death of HepG2. In addition, it was not shown nucleus chromatin condensation and fragmentation under hoechst staining. However, by the using annexin V staining assay, externalizations of phosphatidylserine in HepG2 cell which were treated with Cortex ulmi pumilae extracts were detected in the early time (at 9 hr after extract treatment). Furthermore, LDH release was not detected in this early stage. Therefore, Cortex ulmi pumilae extracts-induced cell death of HepG2 cells is mediated by apoptotic death signal processes. Result : The activity of caspase 3-like proteases remained in a basal level in HepG2 cells which treated with the extract of Cordyceps sinensis. However, it was markedly increased in HepG2 cells which treated with two extracts of Cortex ulmi pumilae (C.U.P.-C, C.U.P.-K) which were differently extracted (respectively, 2.3 and 3.3 fold). On a while, the phosphotransferase activities of JNK1 was markedly induced in HepG2 cells which were treated with two extracts of Cortex ulmi pumilae. On the contrary, the activation of transcriptional activator, activating protein1(AP-1) and NF-kB were severely decreased by these two extracts of Cortex ulmi pumilae (C.U.P.-C, C.U.P.-K). In addition, antioxidants (GSH and NAC) and intracellular $Ca2^+$ level regulator (Bapta/AM and Thapsigargin) did not affect Cortex ulmi pumilae extracts-induced apoptotic death of HepG2 cells. Conclusions : In conclusion, our results suggest that two extracts of Cortex ulmi pumilae (C.U.P.-C, C.U.P.-K) induces the apoptotic death of human liver origin hepatoma HepG2 cells via activation of caspase 3-like proteases as well as JNK1, and inhibition of transcriptional activators, AP-1 and $NK-{\kappa}B$.

  • PDF

Induction of G2/M Arrest of the Cell Cycle by Genistein in Human Bladder Carcinoma and Leukemic Cells (인체 방광암 및 백혈병세포에서 genistein에 의한 세포주기 G2/M arrest 유발에 관한 연구)

  • Kim, Eu-Kyum;Myong, You-Ho;Song, Kwan-Sung;Lee, Ki-Hong;Rhu, Chung-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.589-597
    • /
    • 2006
  • Genistein, a natural isoflavonoid phytoestrogen, is a strong inhibitor of protein tyrosine kinase and DNA topoisomerase activities. There are several studies documenting molecular alterations leading to cell cycle arrest and induction of apoptosis by genistein as a chemopreventive agent in a variety of cancer cell lines; however, its mechanism of action and its molecular targets on human bladder carcinoma and leukemic cells remain unclear. In the present study, we have addressed the mechanism of action by which genistein suppressed the proliferation of T24 bladder carcinoma and U937 leukemic cells. Genistein significantly inhibited the cell growth and induced morphological changes, and induced the G2/M arrest of the cell cycle in both T24 and U937 cells with a relatively stronger cytotoxicity in U937. The G2/M arrest in T24 cells was associated with the inhibition of cyclin A, cyclin B1 and Cdc25C protein expression without alteration of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1). However, the inhibitory effects of genistein on the cell growth of U937 cells were connected with a marked inhibition of cyclin B1 and an induction of Cdk inhibitor p21 proteins by p53-independent manner. These data suggest that genistein may exert a strong anticancer effect and additional studies will be needed to evaluate the different mechanisms between T24 and U937 cells.

Effect of Green Tea Extract on Cisplatin- or Doxorubicin-Induced Cytotoxicity in Human Lung Cancer Cell Lines (사람 폐암 세포주에서 시스플라틴이나 독소루비신의 세포독성에 미치는 녹차 추출물의 영향)

  • Lee, Byoung-Rai;Park, Jae-Yoon;Park, Pyoung-Sim
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.619-624
    • /
    • 2011
  • Tea extract (TE) has been shown to have anti-tumor properties in a wide variety of experimental systems. We evaluated green tea extract (GTE) as a biochemical modulator for the antitumor activity of cisplatin and doxorubicin in the treatment of human lung cancer A549 cells. Cells were grown in RPMI-1640 medium supplemented with 10% (v/v) heat-inactivated fetal bovine serum and two antibiotics (100 units/mL penicillin and $100\;{\mu}g$/mL streptomycin). Two types of TE, epigallocatechin galate (EGCG) and GTE, were used in this experiment. The cells were seeded at $1{\times}10^4$ cells/well in the RPMI-1640 media with or without TE ($100\;{\mu}g$/mL) and then treated with different concentrations of doxorubicin ($0{\sim}14\;{\mu}g$/mL) or cisplatin ($0{\sim}35\;{\mu}g$/mL). After incubation in 5% $CO_2$ at $37^{\circ}C$ for 24 hr, cell viability was determined with a MTT assay. We used a Western blot to detect the influence of EGCG and GTE on the expression of p53 and caspase-3 genes in the A549 cells. A549 cell viability decreased to 15% with a $10\;{\mu}g$/mL concentration of cisplatin, and to 21% with a $8\;{\mu}g$/mL concentration of doxorubicin, as measured with the MTT assay. However, pre-treatment of the cells with EGCG ($100\;{\mu}g$/mL) or GTE ($100\;{\mu}g$/mL) resulted in decreased cell viability with $6\;{\mu}g$/mL of cisplatin and $4\;{\mu}g$/mL of doxorubicin. There was no apparent change in cell viability between EGCG or GTE administration in cisplatin- or doxorubicin-induced cytotoxicity in A549 cells. The levels of p53 and caspase-3 in the A549 cells increased with both EGCG and GTE treatment. We found that GTE could potentially affect cisplatin- or doxorubicin-induced cytotoxicity of A549 cells, which may be useful in the chemotreatment of cancer.

Antitumor and Immunostimulating Activities of $Elfvingia$ $applanata$ Hot Water Extract on Sarcoma 180 Tumor-bearing ICR Mice

  • Shim, Sung-Mi;Lee, Jae-Seong;Lee, Tae-Soo;Lee, U-Youn
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.47-52
    • /
    • 2012
  • $Elfvingia$ $applanata$, a medicinal mushroom belonging to Basidiomycota, has been used in the effort to cure cancers of the esophagus and stomach, and is also known to have inhibitory effects on hepatitis B virus infection. The hot water soluble fraction (as Fr. HW) was extracted from fruiting bodies of the mushroom. $In$ $vitro$ cytotoxicity tests showed that hot water extract was not cytotoxic against cancer cell lines such as Sarcoma 180, HT-29, HepG2, and TR at concentrations of 10-2,000 ${\mu}g/mL$. Intraperitoneal injection with Fr. HW resulted in a life prolongation effect of 45.2% in mice previously inoculated with Sarcoma 180. Treatment of Fr. HW resulted in a 2.53-fold increase in the numbers of murine spleen cells at a concentration of 50 ${\mu}g/mL$, compared with control. Incubation of murine spleen cells with Fr. HW at a concentration of 500 ${\mu}g/mL$ resulted in improved immune-potwntiating activity of B lymphocytes through an 8.3-folds increase in alkaline phosphatase activity, compared with control. Fr. HW generated 12.5 ${\mu}M$ of nitric oxide (NO) when cultured with RAW 264.7, a mouse macrophage cell line, at the concentration of 50 ${\mu}g/mL$, while lipopolysaccharide, a positive control, produced 15.2 ${\mu}M$ of NO. Therefore, the results suggested that antitumor activities of Fr. HW from $E.$ $applanata$ might, in part, be due to host mediated immunostimulating activity.

Specific Expression of Interferon-γ Induced by Synergistic Activation Mediator-Derived Systems Activates Innate Immunity and Inhibits Tumorigenesis

  • Liu, Shuai;Yu, Xiao;Wang, Qiankun;Liu, Zhepeng;Xiao, Qiaoqiao;Hou, Panpan;Hu, Ying;Hou, Wei;Yang, Zhanqiu;Guo, Deyin;Chen, Shuliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1855-1866
    • /
    • 2017
  • The synergistic activation mediator (SAM) system can robustly activate endogenous gene expression by a single-guide RNA. This transcriptional modulation has been shown to enhance gene promoter activity and leads to epigenetic changes. Human $interferon-{\gamma}$ is a common natural glycoprotein involved in antiviral effects and inhibition of cancer cell growth. Large quantities of high-purity $interferon-{\gamma}$ are important for medical research and clinical therapy. To investigate the possibility of employing the SAM system to enhance endogenous human $interferon-{\gamma}$ with normal function in innate immunity, we designed 10 single-guide RNAs that target 200 bp upstream of the transcription start sites of the $interferon-{\gamma}$ genome, which could significantly activate the $interferon-{\gamma}$ promoter reporter. We confirmed that the system can effectively and highly activate $interferon-{\gamma}$ expression in several humanized cell lines. Moreover, we found that the $interferon-{\gamma}$ induced by the SAM system could inhibit tumorigenesis. Taken together, our results reveal that the SAM system can modulate epigenetic traits of non-immune cells through activating $interferon-{\gamma}$ expression and triggering JAK-STAT signaling pathways. Thus, this strategy could offer a novel approach to inhibit tumorigenesis without using exogenous $interferon-{\gamma}$.