DOI QR코드

DOI QR Code

Enhancement of Anticancer Activity of Acer mono Aqueous Extracts by Nano-Encapsulation Process

고로쇠 수피 수용성 추출물의 나노입자화를 통한 항암활성 증진

  • Kim, Ji-Seon (Department of Biomaterials Engineering, College of Bioscience and Biotechnology, Kangwon National University) ;
  • Jeong, Myoung-Hoon (Department of Biomaterials Engineering, College of Bioscience and Biotechnology, Kangwon National University) ;
  • Choi, Woon-Yong (Department of Biomaterials Engineering, College of Bioscience and Biotechnology, Kangwon National University) ;
  • Seo, Yong-Chang (Department of Biomaterials Engineering, College of Bioscience and Biotechnology, Kangwon National University) ;
  • Cho, Jeong Sub (DooSan EcoBizNet) ;
  • Lee, Hyeon Yong (Department of Biomaterials Engineering, College of Bioscience and Biotechnology, Kangwon National University)
  • 김지선 (강원대학교 바이오산업공학부) ;
  • 정명훈 (강원대학교 바이오산업공학부) ;
  • 최운용 (강원대학교 바이오산업공학부) ;
  • 서용창 (강원대학교 바이오산업공학부) ;
  • 조정섭 (두산에코비즈넷) ;
  • 이현용 (강원대학교 바이오산업공학부)
  • Received : 2010.08.03
  • Accepted : 2010.11.03
  • Published : 2011.03.31

Abstract

Anticancer activity of Acer mono aqueous extracts was enhanced by nano-encapsulation process of gelatin. The cytotoxicity on human normal lung cell (HEL299) of the extracts from WE (water extract at 100) showed 23.51%, lower than that from NE (nano-encapsulatioin of water extract of Acer mono) in adding the maximum concentration of 1.0 mg/mL. NE showed more potent scavenging effect as 73.15% than the WE. On SOD-like test, the NE showed highest activity as 32.33% at 1.0 mg/mL concentration. Human stomach adenocarcinoma, liver adenocarcinoma, breast adenocarcinoma and lung adenocarcinoma cell growth were inhibited up to about 59-73%, in adding 1.0 mg/mL of NE. NE was 15% higher than conventional water extraction. Among several cancer cell lines (stomach adenocarcinoma, liver adenocarcinoma), the growth of digestive related cancer cells were most effectively inhibited as about 71-73%. The size of nano particles was in the ranges of 100-200 nm, which can effectively the penetrate into the cells, it was observed by real time confocal microscope. It tells that the aqueous extracts of Acer mono bark could be definitely enhanced by nano-encapsulation process.

고로쇠 수피 수용성 추출물의 나노입자화를 통하여 항암활성 증진에 대하여 연구하였다. 먼저 세포독성 측정결과 인간 정상 폐 세포(HEL299)에 대하여 일반 열수 추출물이 1.0 mg/mL의 농도에서 23.51%로 나노입자에 비하여 낮은 세포독성을 나타내었다. 그리고 DPPH radical 소거 활성 실험결과 고로쇠 추출물 나노입자가 높은 항산화 활성을 나타내었고, SOD 유사활성 결과에서도 1.0 mg/mL의 농도에서 32.33%로 일반 열수 추출물에 비하여 높은 항산화 활성을 나타내었다. 인간 위암세포, 간암세포, 유방암세포 그리고 폐암세포에 대하여 암세포 억제 활성 측정결과 고로쇠 추출물 나노입자의 경우 1.0 mg/mL의 농도에서 59-73%의 억제 활성을 나타내었다. 나노입자의 경우 일반 열수 추출물에 비하여 약 5-10% 이상 증진된 활성을 보였다. 그리고 여러 인간 암세포주에 대한 항암실험 결과, 소화기계통의 암세포주에 대하여 71-73%의 암세포 억제 활성을 나타내어 다른 암세포주에 비하여 높은 암세포억제 활성을 보였다. 이러한 결과를 인간 위암세포인 AGS로의 나노입자 침투를 confocal microscope 관찰을 통하여 확인하였다. 위와 같은 결과를 바탕으로 하여 고로쇠 추출물을 나노입자화 공정을 통하여 활성 증진을 확인하였고, 천연 항산화제, 항암소재로서의 활용이 가능할 것으로 사료된다.

Keywords

References

  1. 강윤한, 박용곤, 이기동. 1996. 페놀성 화합물의 아질산염 소거 및 전자공여 작용. 한국식품과학회지 28(2): 232-239.
  2. 김명동, 곽해수. 2004. 나노 식품 소재와 나노 기능성 유제품 개발의 가능성. 한국유가공기술과학회지 22(1): 1-12.
  3. 김철희, 권민철, Syed Abdul Qadir, 황백, 남종현, 이현용. 2007. 초고압 공정에 의한 홍경천의 독성 감소 및 항암활성 증진. 한국약용작물학회지 15(6): 411-416.
  4. 김충모, 정두례, 서화중. 1991. 지리산지역 고로쇠나무 및 거제수(거자수)나무의 수액성분에 관하여 -Mineral과 Sugar성분에 관하여-. 한국식품영양과학회지 20(5): 479-482.
  5. 권민철, 한재건, 하지혜, 진링, 최근표, 박욱연, 이달호, 이현용. 2008. 후박추출물의 나노입자화를 통한 치콘의 저장기간 연장. 한국약용작물학회지 16(5): 320-325.
  6. 권용수, 김명조, 최용화, 곽상수. 1997. 고로쇠나무의 항산화물질 분리와 활성비교. 한국약용작물학회지 5(4):302-306.
  7. 권하나, 박정륭, 전정례. 2008. 산겨릅나무 추출물의 항산화 및 간 기능 보호효과. 한국식품영양과학회지 37(11):1389-1394.
  8. 박성혜, 한종현, 송유진. 2004. 한약재를 이용한 음료의 개발 및 혈관개선에 미치는 기능성 평가. 동의생리학회지 18(4): 364-372.
  9. 박현정, 이호정, 염윤희, 강정윤, 유택균. 2007. 방광 이행상피세포암종에서 Clusterin 단백의 발현과 세포고사. 대한비뇨기과학회지 48(4): 402-407.
  10. 안덕호, 조석자, 정은실, 이현진, 황지환, 박은주, 박해룡, 이승철. 2006. 비단풀 물 추출물의 항산화력 및 항암활성. 한국식품영양과학회지 35(10): 1304-1308.
  11. 안원영. 1975. 고로쇠나무(Acer mono Max.) 수액 표준농축액의 색도지수와 착색물질. 한국임학회지 26: 7-12.
  12. 윤승낙, 조종수, 김태옥. 1992. 자작나무와 단풍나무류의 수액 채취 및 이용. 한국목재공학회지 20(4): 15-20.
  13. 이승은, 방진기, 성낙술. 2004. 헛개나무의 Angiotensin 전환 효소 저해 및 항산화 활성. 한국약용작물학회지 12(1):79-84.
  14. 이세진, 문성훈, 김택, 김진용, 서정식, 김대선, 김율리아, 김영준, 박용일. 2003. 감귤 농축액에서 배양한 운지버섯 배양추출물의 항산화 및 항암활성. 한국미생물생명공학회지 31: 362-367.
  15. 이현화, 이숙영. 2008. 흰민들레와 서양민들레 추출물의 세포독성 및 항산화 활성 비교. 한국약용작물학회지 16(2):79-85.
  16. 진링, 한재건, 하지혜, 정향숙, 권민철, 정명훈, 이학주, 강하영, 최돈하, 이현용. 2008. 고로쇠와 우산고로쇠 나무의 항산화능 및 glutathione S-transferase 활성 비교. 한국약용작물학회지 16(6): 427-433.
  17. Choi, J.H. and Oh, S.K. 1985. Studies on the anti-aging of Korean Ginseng. Journal of Food Science and Nutrition 17: 506-515.
  18. Cross, C.E., Halliwell, B., Borish, E.T., Pryor, W.A., Ames, B.N., Saul, R.L., McCord, J.M. and Harman, D. 1987. Oxygen radicals and human disease. Annals of Internal Medicine 107: 526-545. https://doi.org/10.7326/0003-4819-107-4-526
  19. Dool, R. and Peto, R. 1983. The cause of cancer : Quantitative estimates of avoidable risks of cancer in the United States today. Food and Chemical Toxicology 21: 512-513.
  20. Folin, O. and Denis, W. 1912. On phosphotungastic-phosphomolybdic compounds as color reagents. Journal of Biological Chemistry 12: 239-243.
  21. Freeman, B.A. and Graop, J.D. 1982. Biology of disease; free radicals and tissue injury. Laboratory Investigation 47: 412-426.
  22. Jung, S.J., Lee, J.H., Song, H.N., Seong, N.S., Lee, S.E. and Baek, N.I. 2004. Screening for antioxidant activity of plant medicinal extracts. Journal of the Korean Society for Applied Biological Chemistry 47: 135-140.
  23. Kang, K.C., Lee, C.I., Pyo, H.B. and Jeong, N.H. 2005. Preparation and characterization of nano-liposomes using phosphatidylcholine. Journal of Industrial and Engineering Chemistry 11: 847-851.
  24. Kim, J.C., Lee, H.Y., Kim, M.H., Lee, H.J., Kang, H.Y. and Kim, S.M. 2006. Preparation and characterization of chitosan/gelatin microcapsules containing triclosan, collids and surface B. Biointerfaces 52: 52-56. https://doi.org/10.1016/j.colsurfb.2006.07.001
  25. Lee, H.Y., Lim, N.H., Seo, J.A., Khang, G.S., Kim, J.A., Lee, H.B. and Cho, S.H. 2005. Preparation of poly (vinylpyrrolidone) coated iron oxide nanoparticles for contrast agent. Polymer (Korea) 29: 266-270.
  26. Lee, K.G., Mitchell, A.E. and Shibamoto, T. 2000. Determination of antioxidant properties of aroma extracts from various beans. Journal of Agricultural and Food Chemistry 43: 4817-4820.
  27. Lee T.B. 1982. Illustrated flora of Korea. Hyangmunsa pp. 522-524.
  28. Marklund, S. and Marklund, G. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  29. McCord, J.M. 1987. Oxygen-derived radicals; a link between repercussion injury and inflammation. Federation Proceedings 46: 2402-2406.
  30. Miquel, J., Quintanilha, A.T. and Weber, H. 1989. CRC Handbook of free radicals and antioxidants in biomedicine. CRC press, Boca Raton, USA. pp. 218-223.
  31. Seo, D.S., Kim J.C., Sohn, H.H., Cho, W.G., Lee, S.U., Kim, E.Y., Tae, G.Y., Kim, J.D., Lee, S.Y. and Lee, H.Y. 2004. Preparation and characterization of chitosan/gelatin microcapsules containing triclosan. Journal of Colloid and Interface Science 273: 596-603. https://doi.org/10.1016/j.jcis.2004.01.004
  32. Terazawa, M., Koga, T., Okuyama, H. and Miyake, M. 1984. Phenolic compounds in living tissues of woods III. Platyphylloside, a new diarylheptanoid glucoside from the green back of shirakamba (Betula platyphylla Sukatchev var. japonica Hara). Mokuzai Gakkaishi 30: 391-403.
  33. Trush, M.A., Mimnaugh, E.G. and Gram, T.E. 1982. Activation of pharmacologic agents to radical inermediates. Implications for the role of free radicals in drug action and toxicity. Biochemical Pharmacology 31: 3335-3346. https://doi.org/10.1016/0006-2952(82)90609-8