• Title/Summary/Keyword: Campus Network

Search Result 293, Processing Time 0.025 seconds

Anomaly Detection Method Using Entropy of Network Traffic Distributions (네트워크 트래픽 분포 엔트로피를 이용한 비정상행위 탐지 방법)

  • Kang Koo-Hong;Oh Jin-Tae;Jang Jong-Soo
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.283-294
    • /
    • 2006
  • Hostile network traffic is often different from normal traffic in ways that can be distinguished without knowing the exact nature of the attack. In this paper, we propose a new anomaly detection method using inbound network traffic distributions. For this purpose, we first characterize the traffic of a real campus network by the distributions of IP protocols, packet length, destination IP/port addresses, TTL value, TCP SYN packet, and fragment packet. And then we introduce the concept of entropy to transform the obtained baseline traffic distributions into manageable values. Finally, we can detect the anomalies by the difference of entropies between the current and baseline distributions. In particular, we apply the well-known denial-of-service attacks to a real campus network and show the experimental results.

A Web-based Realtime Monitoring System for Photobioreactor (웹-기반 실시간 광생물 반응기 모니터링 시스템)

  • Sung, Won-Ki;Kim, Sung-Soo;Lee, Je-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4341-4348
    • /
    • 2012
  • This paper presents a web-based real-time monitoring system for a photobioreactor using an WiFi wireless network. An WiFi interface can support high speed data transfer, up to 11Mbps and it can be compatible with commercial wireless LAN environment. Thus, the proposed cell culture based on WiFi network can be easily applied to the reconfigurable system and real-time monitoring system. In this paper, we integrate the commercial WiFi module to the various bio-sensors and sensor control board to configure the wireless network. After we evaluate application S/W for monitoring the environment within incubator, we verify the proposed sensor networks for a cell culture system and its monitoring system. This result can be applicable for various bio-applications that require the network configuration and real-time monitoring system.

Homomorphic Encryption as End-to-End Solution for Smart Devices

  • Shanthala, PT;Annapurna, D;Nittala, Sravanthi;Bhat, Arpitha S;Aishwarya, Aishwarya
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.57-62
    • /
    • 2022
  • The recent past has seen a tremendous amount of advancement in the field of Internet of Things (IoT), allowing the influx of a variety of devices into the market. IoT devices are present in almost every aspect of our daily lives. While this increase in usage has many advantages, it also comes with many problems, including and not limited to, the problem of security. There is a need for better measures to be put in place to ensure that the users' data is protected. In particular, fitness trackers used by a vast number of people, transmit important data regarding the health and location of the user. This data is transmitted from the fitness device to the phone and from the phone onto a cloud server. The transmission from device to phone is done over Bluetooth and the latest version of Bluetooth Light Energy (BLE) is fairly advanced in terms of security, it is susceptible to attacks such as Man-in-the-Middle attack and Denial of Service attack. Additionally, the data must be stored in an encrypted form on the cloud server; however, this proves to be a problem when the data must be decrypted to use for running computations. In order to ensure protection of data, measures such as end-to-end encryption may be used. Homomorphic encryption is a class of encryption schemes that allow computations on encrypted data. This paper explores the application of homomorphic encryption for fitness trackers.

A Real-Time Network Traffic Anomaly Detection Scheme Using NetFlow Data (NetFlow 데이터를 이용한 실시간 네트워크 트래픽 어노멀리 검출 기법)

  • Kang Koo-Hong;Jang Jong-Soo;Kim Ki-Young
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.19-28
    • /
    • 2005
  • Recently, it has been sharply increased the interests to detect the network traffic anomalies to help protect the computer network from unknown attacks. In this paper, we propose a new anomaly detection scheme using the simple linear regression analysis for the exported LetFlow data, such as bits per second and flows per second, from a border router at a campus network. In order to verify the proposed scheme, we apply it to a real campus network and compare the results with the Holt-Winters seasonal algorithm. In particular, we integrate it into the RRDtooi for detecting the anomalies in real time.

Joint routing, link capacity dimensioning, and switch port optimization for dynamic traffic in optical networks

  • Khan, Akhtar Nawaz;Khan, Zawar H.;Khattak, Khurram S.;Hafeez, Abdul
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.799-811
    • /
    • 2021
  • This paper considers a challenging problem: to simultaneously optimize the cost and the quality of service in opaque wavelength division multiplexing (WDM) networks. An optimization problem is proposed that takes the information including network topology, traffic between end nodes, and the target level of congestion at each link/ node in WDM networks. The outputs of this problem include routing, link channel capacities, and the optimum number of switch ports locally added/dropped at all switch nodes. The total network cost is reduced to maintain a minimum congestion level on all links, which provides an efficient trade-off solution for the network design problem. The optimal information is utilized for dynamic traffic in WDM networks, which is shown to achieve the desired performance with the guaranteed quality of service in different networks. It was found that for an average link blocking probability equal to 0.015, the proposed model achieves a net channel gain in terms of wavelength channels (𝛾w) equal to 35.72 %, 39.09 %, and 36.93 % compared to shortest path first routing and 𝛾w equal to 29.41 %, 37.35 %, and 27.47 % compared to alternate routing in three different networks.

A Study Education Model on the Software Defined Network Control System in the Transport Network (전송망의 소프트웨어 정의 네트워크 제어 시스템 교육 모델 연구)

  • Chang, Moon-soo;Kim, Yu-doo
    • Journal of Practical Engineering Education
    • /
    • v.10 no.2
    • /
    • pp.81-87
    • /
    • 2018
  • During the major sections of the network, Software-defined network control technology for the network area corresponding to the transmission network is becoming a change in network-controlled environments utilizing network operation and provisioning across the network industry. Currently development is underway along with the deployment of PTN equipment and configuration for provisioning is being phased out. It is actively introducing establishment of SDN-based control system while constructing provisioning of PTN equipment from actual commercial network. Therefore, in this thesis, we are going to look at the contents and trends of SDN systems in packet-based transmission networks based on PTN and use them in research on OpenDaylight, an open source for configuring SDN. It then Network Operator will study the software defined control techniques for operational education.

Implementation of Mobile Node Monitoring System for Campus Vehicle Management (캠퍼스 내 차량 관리를 위한 이동노드 위치 감시 시스템 구현)

  • Kim, Hyun-Joong;Choi, Jun-Young;Yang, Hyun-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.316-319
    • /
    • 2008
  • Most of campus vehicle management systems, so far, have simple functions such as managing vehicle in/out or issuing parking tickets. Recently some of them use RFID tags to count total numbers of cars in the campus, excluding exact parking position management. In this paper we propose a new campus vehicle management system using wireless sensor network location management scheme. This system adopts RSSI based location management method with some performance improvement technique. According to the experimental result, this proposed scheme can be used to implement an effective campus vehicle management system.

  • PDF

Implementation of Mobile Node Monitoring System for Campus Vehicle Management (RSSI 기반 센서 노드 위치 관리 기법을 적용한 캠퍼스 차량 관리 시스템 구현)

  • Kim, Hyun-Joong;Yang, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.999-1004
    • /
    • 2010
  • Most of campus vehicle management systems, so far, simply manages coming in or go out of vehicles, issuing a parking tickets. Recently some of them use RFID tags to count total numbers of cars in the campus, excluding exact parking position management. In this paper we propose a new campus vehicle management system using wireless sensor network location management scheme. This system adopts RSSI based location management method with some performance improvement technique. According to the experimental result, this proposed scheme can be used to implement an effective campus vehicle management system.

X-ray Image Segmentation using Multi-task Learning

  • Park, Sejin;Jeong, Woojin;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1104-1120
    • /
    • 2020
  • The chest X-rays are a common way to diagnose lung cancer or pneumonia. In particular, the finding of a lung nodule is the most important problem in the early detection of lung cancer. Recently, a lot of automatic diagnosis algorithms have been studied to find the lung nodules missed by doctors. The algorithms are typically based on segmentation network like U-Net. However, the occurrence of false positives that similar to lung nodules present outside the lungs can severely degrade performance. In this study, we propose a multi-task learning method that simultaneously learns the lung region and nodule-labeled data based on the prior knowledge that lung nodules exist only in the lung. The proposed method significantly reduces false positives outside the lung and improves the recognition rate of lung nodules to 83.8 F1 score compared to 66.6 F1 score of single task learning with U-net model. The experimental results on the JSRT public dataset demonstrate the effectiveness of the proposed method compared with other baseline methods.

A Review of Security Threats of Internet of Things

  • Nargis Jamal;Sataish Riaz;Jawad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.99-108
    • /
    • 2024
  • The Internet of Things (IoT) is a novel concept that allows a large number of objects to be connected to the Internet while also allowing them to be controlled remotely. The Internet of Things is extensive and has become an almost inseparable part of our daily lives. Users' personal data is frequently obtained by these linked gadgets and stored online. In recent years, the security of acquired data has become a major concern. As devices grow more linked, privacy and security concerns grow more pressing, and they must be addressed as soon as possible. IoT implementations and devices are particularly vulnerable to attacks that might adversely affect customer security and privacy, which might have an impact on their practical utility. The goal of this study is to bring attention to the security and privacy concerns that exist in IoT systems. To that purpose, the paper examines security challenges at each level of the IoT protocol stack, identifies underlying impediments and critical security requirements, and provides a rapid overview of available security solutions for securing IoT in a layered environment.