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Abstract 
 

The chest X-rays are a common way to diagnose lung cancer or pneumonia. In particular, 

the finding of a lung nodule is the most important problem in the early detection of lung cancer. 
Recently, a lot of automatic diagnosis algorithms have been studied to find the lung nodules 

missed by doctors. The algorithms are typically based on segmentation network like U-Net. 

However, the occurrence of false positives that similar to lung nodules present outside the 
lungs can severely degrade performance. In this study, we propose a multi-task learning 

method that simultaneously learns the lung region and nodule-labeled data based on the prior 

knowledge that lung nodules exist only in the lung. The proposed method significantly reduces 

false positives outside the lung and improves the recognition rate of lung nodules to 83.8 F1 
score compared to 66.6 F1 score of single task learning with U-net model. The experimental 

results on the JSRT public dataset demonstrate the effectiveness of the proposed method 

compared with other baseline methods. 
 

 

Keywords: image segmentation, convolutional neural network, lung nodule segmentation 
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1. Introduction 

Accurate and robust lesion detection is a key component of an automated medical diagnosis 

system [1],[2],[3],[4],[5],[6],[7],[8]. Notable achievements in deep learning have benefited 
several research trials in medical image analysis, [9],[10],[11],[12],[13],[14],[15],[16]  and the 

most recent major lesion detection algorithms are based on convolutional neural networks. In 

particular, semantic segmentation methods such as U-Net [17] allow for precise lesion 

detection with respect to intensity and shape variations. Although current state-of-the-art 
semantic segmentation networks such as ImageNet [18] demonstrate satisfactory performance 

with regard to common object detection, the task of detecting lung nodules in Chest X-rays 

remains a challenge. 

Chest X-ray is a common way to diagnose lung cancer or pneumonia. A lung nodule is a 

relatively small focal density in the lung. The nodule most commonly represents a cancer, 
especially in older adults and smokers. In particular, the finding of a lung nodule is most 

important problem in early detection of lung cancer. Recently, a lot of automatic diagnosis 

algorithms have been studied to find the lung nodules missed by doctors.  However, the 
occurrence of false positives present outside the lungs significantly degrades performance. To 

avoid detection of nodule-like blobs outside lung are very imortant and challenging task for 

improving system performance and stability. 

To address the challenge, we propose a novel multi-task learning (MTL) method to utilize 

lung regions and nodule-labeled data; the method mimics the knowledge and experience of a 
clinical expert regarding disease and anatomy. In our study, we considered the relationship 

between nodule and lung as an example of knowledge and experience of such clinical expert. 

A lung nodule is a small round or oval-shaped growth in the lung and is less than 3 cm 

(approximately 1.2 inches) in diameter. [19] Accordingly, clinical experts concentrate on the 
disease-related part to diagnose and treat patients. They recognize that small faint nodular 

densities outside the lung are not actual nodules; nonetheless, a nodule in the lung is more 

distinctive. Our main contributions are as follows: 

 

    • To propose a novel multiple-objective segmentation network (MO-SegNet) for detecting 

lung nodules in chest X-rays. We demonstrate that the anatomical region data enhance lesion 
detection performance in the MTL model.  

    • To demonstrate the effect of multiple loss balancing and how it affects nodule detection 

performance significantly. In addition, we demonstrate that our segmentation network can 

detect other lesions in the chest, such as pleural effusion.  

 

Fig. 1 shows the pipeline of proposed lung nodule detection system. The proposed pipeline is 

divided into training phase, test phase and post processing phase. In the training phase, the 

segmentation network is trained by receiving input images, lung regon labels, and nodule 

labels at the same time. In the test phase, only the input image is taken as an input to produce a 
nodule segmentation output. In the post processing phase, the bounding box is created using 

the connected component labeling algorithm with the nodule segmentaton output. 
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The rest of the paper is organized as follows. Section 2 describes the related work. The MTL 
method is proposed in Section 3. Section 4 gives out the experiment results. The conclusion is 

described in Section 5.  

2. Related Work 

 

2.1. Multitask Learning 

Humans often infer facts from several related knowledge sources and learn relationships 

based on complex tasks. An understanding of one task is often expanded and affects the 

learning of other tasks. This is the motivation behind MTL, [20] which effectively increases 
the sample size and decreases the noise level of the training data by ignoring data-dependent 

noise and generalizing with an improved representation, learned by composing multiple tasks. 

A single model with multiple related objectives has a higher probability of obtaining a more 
generalized representation by averaging the noise patterns. 

We can view MTL as a form of inductive transfer. [21] The inductive bias is provided by 

auxiliary tasks, which cause the model to prefer hypotheses that explain more than one task. 

This generally results in solutions that generalize better. Agrawal et al. [22] demonstrate 

multiple visual tasks, such as ego-motion and image classification, as forms of 
self-supervision for visual feature learning. Further, they provide an effective demonstration 

of learning visual representations from non-visual access to ego-motion information in a 

real-world setting, by training neural networks to predict the camera transformation between 

pairs of images. 

 

2.2. Semantic Segmentation 

Semantic segmentation refers to understanding an image at the pixel level. [23]  

demonstrates that fully convolutional networks can efficiently learn to make dense predictions 
for per-pixel tasks, such as semantic segmentation. Almost all semantic segmentation 

networks have an encoder–decoder architecture to capture location information of an object. 

[24], [15]. The encoder reduces spatial resolution with pooling layers and the decoder recovers 
the spatial resolution. There are usually shortcut connections, such as in residual networks, 

which are akin to U-Net. 

In medical image domain, [16] proposed tongue image segmentation aims to extract the 

image object from tongue body. However they used traditonal image processing algorithms 

such as image thresholding, gray projection and active contour model. [25] proposed to solve 
segmentation of skin lesion image based on convolutional neural network and adversarial 

networks. 

Misra et al. [26] demonstrated that, in the computer vision task, one can exploit multiple 

related properties to improve performance using MTL. They proposed combined semantic 

segmentation and surface normal estimation networks. They also demonstrated that all layers 
from the first convolution to the last fully connected layer are shared by all tasks, and only the 

last layers are task-specific. In [21], MTL with multiple regression and classification for 

semantic segmentation is proposed. The authors suggested that MTL is beneficial for 
regularization and accuracy improvement. Furthermore, they proposed using multitask loss 

functions to simultaneously learn to balance various classification and regression losses using 

homoscedastic uncertainty. 
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2.3 Bounding Box Detection 

Another object detection method is bounding box detection network such as Faster R-CNN 

[36], SSD [37], YOLO [38]. For MTL with bounding box detection network, we need 
simultaneous bounding box regression and pixel classification (segmentation) architecture, 

which has a much more complicated loss function. Those architectures makes it relatively 

difficult to balance the two tasks. The proposed method is more advantageous for learning two 

segmentation branches with one loss function, and converting the bounding box into a 
rectangular segmentation mask does not affect significantly the performance. 

3. X-ray Image Segmentation using Multi-task Learning 

3.1 Lung Nodule Detection in Chest X Ray 

The occurrence of false positives that similar to lung nodules present outside the lungs can 

severely degrade performance.  

To address these challenges, we utilize anatomical regions and nodule-labeled data for MTL, 
which mimics the prior knowledge of doctors regarding disease and anatomy. In our study, we 

considered the relationship between nodule and lung as an example of knowledge and 

experience of such clinical expert. A lung nodule is a small round or oval-shaped growth in the 
lung and is less than 3 cm (approximately 1.2 inches) in diameter. Accordingly, clinical 

experts concentrate on the disease-related part to diagnose and treat patients. They recognize 

that small faint nodular densities outside the lung are not actual nodules; nonetheless, a nodule 
in the lung is more distinctive. 
 

 
Fig. 1. The pipeline of proposed lung nodule detection system (Single task) 
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Fig. 2. Multi objective segmentation architecture for chest and lung nodule segmentation 

 

3.2 Multi Task Learning For Image Segmentation 

 

The most commonly used method to perform MTL in deep learning is parameter sharing of 
hidden layers, which is generally achieved by sharing hidden layers between all tasks. This 

type of parameter sharing significantly reduces the risk of overfitting. Ruder [27] 

demonstrated that the risk of overfitting the shared parameters is less than that of overfitting 

task-specific parameters. When we attempt to learn more tasks, our model has to search a more 
discriminative representation that captures all tasks. One more view of MTL is for auxiliary 

tasks. The goal of an auxiliary task in MTL is to enable the model to learn more helpful 

representations for main tasks. If the nodule detection problem is the main task, chest region 
segmentation is an auxiliary task that can generate representations that are more helpful. 

Similarly, the auxiliary task can be used to focus on parts of the image that a model might 

normally ignore. In our case, chest region segmentation results in ignoring nodules outside the 

lung. Fig. 2 illustrates an overview of our multiple-objective segmentation network 
architecture to perform chest and lung nodule segmentation simultaneously. Multiple source 

data is incorporated in feature split branch for MTL. Each branch share same U-Net network 

and split branch for lung region output and nodule region output. Brief network architecture is 
illustrated in Fig. 2. Our architecture has both chest and lung nodule segmentation networks, 

which share feature layers. The single-objective nodule segmentation network is based on the 

structure of the U-Net architecture, but with some modifications. The core of the U-Net 
architecture is an encoder–decoder scheme and it has lateral skip connections. In our modified 

architecture, the encoder is followed by an atrous spatial pyramid pooling (ASPP) layers to 

detect multiscaled objects. ASPP uses atrous (dilated) convolutions with parameters of 

different rates for arbitrary scale detection. [24] Atrous convolutions are special convolutions 
with a factor that expands the field of view. Fig. 3 shows details of ASPP module and other 

alternative network strutures of semantic segmentation network. The factor expands the 

convolution filter according to the dilation rate and fills the empty spaces with zeroes.  ASPP 
module will sharply increase the amount of parameters. However, rather than building deeper 

general convolutions to get larger FOV, Atrous convolution can have similar FOV with less 

depth. In creating a multi-scale network with a larger FOV, ASPP has relatively shallow 
network than composition of general convolutions. Moreover, sparse input data is more 

efficiently represented using as few components as possible, and thus, it generalizes 

satisfactorily. Therefore, varying the dilation rate of atrous convolution generates filters that 

detect objects at multiple scales. Using multiple parallel atrous convolution layers with 
different sampling rates, we can aggregate the multiscaled object detector in a single model. 

The decoder part has upsampling layers applied by a convolution transpose operation. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 3, March 2020                                  1109 

Furthermore, lateral skip connections pass the feature maps from lower layers of the 
contracting path to the analogous level in the expanding path. Details of the neural network 

layers are described in Table 1. 
 

 
Fig. 3. Tyepes of  segmentation network architecture. 

(a) Deconvnet   (b) U-Net   (c) Deconvnet with Atrous pyramid pooling netowker 

(d)  U-Net with Atrous pyramid pooling netowker 

 

Loss function for single objective function For the base segmentation model, we used 

adaptive weighted cross-entropy [28] exploited the class weighting parameter to manage the 

imbalanced size of each class. We let 𝑤 ∈ ℝ𝑘 denote a weight vector with elements 𝑤𝑘 > 0 

defined over the range of class labels 𝑘 ∈ {1,2, . . . , 𝐾} . We then define the weighted 

cross-entropy as  
 

 ℒ = −𝑤𝑐𝑦𝑐log 𝑝(𝑥)                                                     (1) 

 

𝑤 is calculated by (𝑁 − ∑ 𝑟𝑛)/ ∑ 𝑟𝑛  in every batch, where 𝑟𝑛 denotes the pixel label count. 

Variables 𝑦𝑐 and 𝑥 are the true label and input image, respectively.  

 

 
Data Augmentation In variable image settings, we may have a dataset of images captured 

under a limited set of conditions. However, our target images may have been captured across a 

variety of conditions. Based on our observations, chest X-rays differ in translation, orientation, 
randommargin, brightness, and have pattern noise from radiography equipment. For all 

observations and prior knowledge, we generate augmented data with random cropping, 

orientation, brightness, and with additional Gaussian noise and Poisson noise. 
 

Optimizer We use the ADAM [29] optimizer with an initial learning rate of 0.001. The 

exponential decay rates for the first moment and second moment estimates are 0.9 and 0.999, 

respectively. 
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Table 1. Details of neural network architecture 

No. Layer Type Bottom 

Layer 

Neurons Activation Kernel Size Norm 

1 Conv Input 16 RELU 3 × 3 GN 

2 Conv 1 16 RELU 3 × 3 GN 

3 Max Pooling 2 N/A N/A 3 × 3 (stride 2 × 2) GN 

4 Conv 3 32 RELU 3 × 3 GN 

5 Conv 4 32 RELU 3 × 3 GN 

6 Max Pooling 5 N/A N/A 3 × 3 (stride 2 × 2) GN 

7 Conv 6 64 RELU 3 × 3 GN 

8 Conv 7 64 RELU 3 × 3 GN 

9 Conv 8 64 RELU 3 × 3 GN 

10 Max Pooling 9 N/A N/A 3 × 3 (stride 2 × 2) GN 

11 Conv 10 128 RELU 3 × 3 GN 

12 Conv 11 128 RELU 3 × 3 GN 

13 Conv 12 128 RELU 3 × 3 GN 

14 Max Pooling 13 N/A N/A 3 × 3 (stride 2 × 2) GN 

15 A. Conv 14 128 RELU 3 × 3 (rate 3) BN 

16 Conv 15 128 RELU 1 × 1 GN 

17 Conv 16 128 RELU 1 × 1 GN 

18 A. Conv 14 128 RELU 3 × 3 (rate 5) BN 

19 Conv 18 128 RELU 1 × 1 GN 

20 Conv 19 128 RELU 1 × 1 GN 

21 A. Conv 14 128 RELU 3 × 3 (rate 7) BN 

22 Conv 21 128 RELU 1 × 1 GN 

23 Conv 22 128 RELU 1 × 1 GN 

24 A. Conv 14 128 RELU 3 × 3 (rate 9) BN 

25 Conv 24 128 RELU 1 × 1 GN 

26 Conv 25 128 RELU 1 × 1 GN 

27 Element Sum 17,20,23,26 128 N/A N/A N/A 

28 T. Conv 27 128 RELU 3 × 3 (stride 2 × 2) BN 

29 Concat 28, 13 128 N/A N/A N/A 

30 Conv 29 64 RELU 3 × 3 BN 

31 Conv 30 64 RELU 3 × 3 BN 

32 T. Conv 31 64 RELU 3 × 3 (stride 2 × 2) BN 

33 Concat 32, 9 64 N/A N/A N/A 

34 Conv 33 32 RELU 3 × 3 BN 

35 Conv 34 32 RELU 3 × 3 BN 

36 T. Conv 35 32 RELU 3 × 3 (stride 2 × 2) BN 

37 Concat 36, 5 32 N/A N/A N/A 

38 Conv 37 16 RELU 3 × 3 BN 

39 Conv 38 16 RELU 3 × 3 BN 

40 T. Conv 39 16 RELU 3 × 3 (stride 2 × 2) BN 

41 Concat 40, 2 16 N/A N/A N/A 

42 Conv 41 16 RELU 3 × 3 BN 
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43 Conv 42 2 RELU 1 × 1 N/A 

44 Conv 41 16 RELU 3 × 3 BN 

45 Conv 44 2 RELU 1 × 1  N/A 

 

Group Normalization We use group normalization (GN) [30] instead of batch normalization 

(BN). BN’s error increases rapidly when the batch size becomes smaller; this is because of 
inaccurate batch statistics estimation. Our model uses one sample for each batch; thus, the 

training curve is observed to oscillate during every iteration. GN significantly mitigates such 

an oscillation. We have demonstrated that GN also enhances the final performance compared 

to Batch Normalization (BN) in Table 4, as we show in the section 4. 
 

3.3 Weighting Multiple Objective Loss Function 

We define two loss functions for ℒ𝑦 and ℒ𝑧, namely a nodule segmentation loss function and a 

lung region segmentation loss function, respectively. We formulate the following function for 

balancing multiple-objective losses. 
 

ℒ𝑚𝑡𝑙 = 𝜆ℒ𝑦 + (1 − 𝜆)ℒ𝑧                                               (2) 

ℒ𝑦 = −𝑤𝑛,𝑐𝑦𝑛,𝑐log 𝑝(𝑥) 

ℒ𝑧 = −𝑤𝑙,𝑐𝑦𝑙,𝑐log 𝑝(𝑥) 

 

ℒ𝑦 is weighted cross entropy with lung nodule label, ℒ𝑧 is weighted cross with lung region. 

Moreover, we introduce a principled multiple loss weighting function that can be trained to 

balance segmentation loss in the case of large differences. Our method can learn to balance 
these weightings optimally. We demonstrate how loss weighting affects model performance. 

Moreover, we compare manually optimized fixed weighting and our loss weighting method. 

We observe that our loss weighting function is robust against the initial values selected for the 

parameters. At the end of training, the losses are weighted with the parameter λ to determine 
the balance between chest and lung nodule segmentation.  
 

3.4 Implementation Details 
 

We re-scale the X-ray images such that their shorter side is 1024 pixels.  

We used tensorflow 1.2.0 and python 3.6 for implementation. It took 1 day on training with single 

nVidia Titan-X GPU. On testing time, it took 500 msec for single X-ray image with preprocessing. 

4. Experimental Results and Analysis 

 

4.1 Experimental Dataset and Evaluation Metric 

 

We applied the proposed method to a public dataset of chest X-rays (JSRT). [31] 
Segmentation performance was assessed by comparing the output of the proposed automated 

segmentation methods with the ground truth, in terms of F1-score and FROC (sensitivity and 

number of false positives per scan). We also compared our proposed method with the U-Net 

baseline network. For this experimental work, we used images from the public JSRT dataset, 
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which is the standard database of digital images with and without chest lung nodules, created 
by the Japanese Society of Radiological Technology (JSRT) in cooperation with the Japanese 

Radiological Society in 1988. It comprises 154 nodule and 93 non-nodule images as 

high-resolution (2048 × 2048 matrix size, 0.175-mm pixel size) chest X-ray images. It covers 

a wide density range (12 bit, 4096 grayscale). Images with chest lung nodules have 
annotations with the X- and Y-coordinates of the nodules.  

 

 
Fig. 4. JSRT dataset (left) and SCR dataset (right). 

 

We used the segmentation in chest radiographs (SCR) database [32] for lung region labels. 

The SCR database has been established to facilitate comparative studies on the segmentation 
of the lung fields, heart, and clavicles in standard posterior–anterior chest radiographs. All 

chest radiographs of the SCR database were obtained from the JSRT database. Fig. 4 shows 

sample images from the JSRT and SCR datasets. 
 

We evaluated the F1/Recall/Precision score by 5-fold cross-validation of positive samples. 

The 154 cases were divided into five subsets of similar size: four subsets were used for training 

and the remaining one was used for testing. Additional qualification testing was performed to 
verify the design and performance of the proposed segmentation network on other lesion data.  

 

4.2 Evaluation Results 

 
Table 2. Comparing accuracy of various data and CNN architectures 

Task Model F1 Recall Precision 

Single U-net 66.6±3.5 % 68.7±1.8 % 64.6 ± 2.9 % 

Single MO-SegNet 64.5±3.4 % 62.5±3.9 % 66.6 ± 3.1 % 

Multiple U-net 74.0±2.5 % 62.5±3.7 % 90.6 ± 2.1 % 

Multiple MO-SegNet 83.8±𝟑. 𝟒 % 81.3±4.1 % 86.4 ± 3.8 % 

 

Comparison of single and multiple objective segmentation method In Table 2, we list the 
results from the experiment with the effect of incorporating multiple-objective segmentation 

methods. In the table, task means whether single or multiple objective learning is used. Model 
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means whether U-net baseline model or proposed MO-SegNet is used. For U-net architecture, 
we reimplement U-net with feature split branch. We compare individual models of the 

baseline U-Net and our proposed architecture. This distinctly illustrates the benefit of 

multiple-objective segmentation networks, which obtain significantly better results than 

individual task models. The proposed method with a fixed balance loss attains a value of 83.8, 
81.3, and 86.4 for F1-score, recall, and precision, respectively. Multiple task learning with 

both of U-net and MO-SegNet are outperformed single task learning. This means that the 

performance of MTL is higher regardless of model. Moreover, proposed MO-SegNet with 
MTL showed most higher performance. 

 

Fig. 6 shows the false positive reduction cases outside lung by our model; Fig. 6 (left) shows 
the input image and mask of the pixels that are of nodule lesions, and Fig. 6 (center) and Fig. 

6 (right) show the output of the baseline network and the proposed method, respectively. First 

3 pictures of first line have nodules in groudtruth, so that it is X ray of cancer disease case. 3 

pictures of second line have no nodules in groudtruth, so that it is X ray of healthy case. We 
can observe that the false positives (red circle) in Fig. 6 (center) is disappeared by the 

proposed method in Fig. 6 (right). However deteced nodule (yellow circle) is still visible in 

both center and right pictures in first line of cancer disease case. 
Fig. 7 shows the lesions detected by our model; Fig. 6 (left) shows the input image and mask 

of the pixels that are of nodule lesions (yellow circle), and Fig. 6 (center) and Fig. 6 (right) 

show the output of the baseline network and the proposed method, respectively. We can 

observe that the false negative lesion Fig. 6 (center) is detected by (yellow circle) the 
proposed method Fig. 6 (right). 

 

Effect of weighting multiple objective loss We demonstrate the effect of weighting 
multiple-objective losses. Model performance is extremely sensitive to weight selection, as 

illustrated in  Fig. 5. The training curve was measured by repeated learning 10 times while 

adjusting the weighting parameter. The change in F1 score was measured at every iteration. 
When the weighting parameter is 1.0 (only nodule segmentation works), it show very low 

performance. We select the best-performing value of loss weighting as 0.99, from the 

experiments in Table 3.  
In the experiment, it was confirmed that a small difference of 1.0 and 0.99 makes a big 
difference in performance. This proves that the proposed MTL method shows a big 

performance improvement even if only a little effect. In the case of loss weighting between 

0.95 and 0.99, there was a slight difference, but in the case of less than that, the performance 
dropped again. This shows that the performance of lung nodule segmentation may be reduced 

if too many tasks are performed by overbalanced weighting parameter to segment lung regions 

during multi task. 
 

More detailed performance analysis We show our more detailed analysis on JSRT test set in 

Table 5. comparing to other state-of-the-art semantic segmentation methods of Deeplab V3+ 

[33] and Pyramid Scene Parsing Network (PSPNet) [34]. Our proposed architecture makes 

further improvement compared to the baseline. Finally, Deeplab V3+ and PSPNet shows 81.2 
and 77.6 F1 score, which shows lower performance than ours. Two models are trained with 

only single task (nodule segmentation) to compare with original model architecture. 
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Fig. 5. Learning curve of varying weight balance 

 

 

Table 3. Comparing accuracy of various data and CNN architectures 

Weight balance F1 Recall Precision 

1.0 76.0 % 62.5 % 96.9 % 

0.99 83.8 % 81.3 % 86.5 % 

0.95 82.5 % 79.8 % 85.4 % 

0.9 78.5 % 68.7 % 91.6 % 

0.8 71.2 % 75.8 % 67.1 % 

0.7 75.1 % 68.7 % 82.8 % 

0.5 14.7 % 81.2 % 8.1 % 

 

Table 4. Ablation test for normalization method 

Model F1 Recall Precision 

U-net + BN 72.3 % 60.8 % 89.1 % 

U-net + GN 74.0 % 62.5 % 90.6 % 

MO-SegNet + BN 81.9 % 79.4 % 84.6 % 

MO-SegNet + GN 83.8 % 81.3 % 86.4 % 

 

Table 5. Comparison against state-of-the-art semantic segmentation methods 

Model F1 Recall Precision 

Deeplab V3+ [33] 81.2±3.9 % 80.1±2.9 % 82.3±4.5 % 

Pyramid Scene 

Parsing Network 
(PSPNet) [34] 

77.7 ± 4.8 % 75.2±5.3 % 80.3±6.9 % 

MO-SegNet 

(proposed) 
83.8±𝟑. 𝟒 % 81.3±4.1 % 86.4 ± 3.8 % 
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(a)                                    (b)                                     (c)                                      (d) 

 

Fig. 6. Inference result for false positive reduction case outside lung. 

(a) Ground truth lesion (b) Ground truth lung region (c) Single data U-net (d) MO-SegNet 

 

 
(a)                                    (b)                                     (c)                                      (d) 

 

Fig. 7. Inference result of the proposed method. 

(a) Ground truth lesion (b) Ground truth lung region (c) Single data U-net (d) MO-SegNet 
 

4.3 Extra Experiments 

As an additional experimental result, we observed that the semantic segmentation network can 

correct errors in the ground truth labeling. An inaccurate bounding box label exists in the JSRT 

dataset, but our semantic segmentation network produces a more accurate bounding box for 

the nodule boundary. Fig. 8 shows the output images for those cases. We also investigated the 
use of our segmentation network to detect other chest lesions, such as pleural effusion. Pleural 

effusion is the presence of water in the lungs, caused by the accumulation of excess fluid 
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between the layers of the pleura, outside the lungs. A horizontal water line is observed in the 
middle of the lung region. In that region, pleural effusion overlaps with bones and has no 

boundary on the other side. The nodule is shaped in an isolated region but pleural effusion is in 

the overlapping region, which makes detection more challenging. In spite of the difficulty, our 

segmentation network demonstrated particularly satisfactory performance: pleural effusion 
was well segmented using the proposed method, which is shown in Fig. 9. The segmentation 

performance was evaluated using the Dice coefficient. We used the NIH chest X-ray8 dataset 

[35] for pleural effusion lesion segmentation. 
 

 
Fig. 8. Label correcting effect of semantic segmentation network 

Some labels in groudtruth are miss-alinged to actual nodule boundary. 
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Fig. 9. Pleural effusion segmentation results 

(Left) Groundtruth (Right) Segmentation output 

5. Conclusion 

 

In this paper, we proposed MO-SegNet, which is a novel multiple-objective segmentation 

network for lung nodule detection. We demonstrated that MTL significantly improves nodule 
detection performance. Our proposed method uses semantic segmentation and MTL networks 

for simultaneous segmentation of chest region and lung nodule lesion position. Moreover, we 

used multiple-objective loss balancing for unbiased multitask loss optimization. The 
experimental results demonstrated that our proposed method is not only a reliable technique 

for lung region segmentation and nodule detection but also improves the final performance of 

the nodule detection task. The performance of the proposed method was evaluated on the 
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public dataset from JSRT, using 5-fold cross-validation. The experimental results 
demonstrated that the performance of the proposed approach can compete with a conventional 

U-Net segmentation network in a single-objective manner. 

One of the limitations of this research was the weight balance tuning. Additional research 

needs to be conducted for weight balance tuning, which is currently too expensive. There is a 
more convenient approach, which is to learn the optimal weights. One of the most reasonable 

solutions is adaptive parameter learning that can be undertaken to weight two 

multiple-objective loss functions. 
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