• Title/Summary/Keyword: Cam-clay Model

Search Result 82, Processing Time 0.022 seconds

A Study on the Influence Range of Lateral Movement of Abutment on the Soft Clay by MCC Model (MCC 모델에 의한 연약지반의 교대측방이동 영향범위에 관한 연구)

  • Park, Choon Sik;Kim, Jong Hwan;Baek, Jin Sool
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.195-205
    • /
    • 2013
  • This study, using the MCC Model to consider consolidation, estimated the range within which no influences occur from lateral movement and its amount of the foundation pile and abutment on the soft ground. This study performed finite element analyses, with variations on the adhesiveness and internal friction angle, depth of soft clay, embankment height, consolidation parameters, and separation distance between the abutment and embankment. The abutment's horizontal displacement exhibits linear change with a longer separation distance, and changes into an exponential form as the embankment gets closer to the abutment. As the soft clay layer becomes 10 m deeper, the horizontal displacement tends to increase 1.5~3.0 times. However, it decreases at a rate of 0.3~0.95 when adhesiveness is increased by 10 $kN/m^2$ and internal friction angle is increased by $5^{\circ}$. The increase change rate in a lateral movement amount becomes greater if it is closer to the abutment when the abutment separation distance is long. When the distance is short, the change rate of horizontal displacement increases in similar a way, but it tends to be decreasing overall.

연약지반 변형해석을 위한 다목적 Program개발

  • 박병기;정진섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.362-375
    • /
    • 1991
  • Background and Necessity of the study : For more than 20 years, the soil engineering reserach group of Chonnam National University has been performing the deformation analysis of soft clayey foundation, since the University is located near the south-western coast of Korean Peninsulla, along which tide reclamation works have been under proaressing. Associsted with the fact mentioned above, the researchers have been developing a computer program in order to carry out deformation analysis of soft foundation since early 1980. Case-studies : In this research, the Biot's equation was selected as the governing equation coupled with several constitutive models including original and modified Cam-clay models, elasto-viscoplastic model, Lade's model etc. The anisotropy of soi1 can be considered in this program. To validate the accuracy of the computer program developed a couple of case-studies were performed. These include the pilot banking, sand drain considering smear effect and compound foundation reinforced with sheet pile into soft foundation.i) The pilot banking Good results could be acquired by assuming banking load as the body force composed of finite element mesh rather than equivalent concentrated load.ii) The sand drain Due to smear, the delay of consolidation was remarkable at the early stsge. so safety for the failure of foundation should be checked for the initial step of consolidation. iii) The compound foundation Accurate results were obtained by introducing the joint element method for the soft foundation reinforced with sheet pile into soiㅣ.

  • PDF

Estimation of Pile Tension Loads Induced by Excavation in Singapore Soft Clay Applying a Pile-Plugged Jet Grouted Slab (말뚝-그라우트 슬라브가 적용된 싱가포르 연약지반 굴착 시 말뚝 인장력 산정에 관한 연구)

  • Lee, Seung-Rae;Park, Hyun-Ku;Shim, Jai-Beom;Lim, Seok-San;Shin, Kang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.77-92
    • /
    • 2009
  • In the present paper, a numerical study was carried out for a reasonable and realistic evaluation of tension loads in piles during deep excavation in Singapore soft soil applying pile-plugged jet grouted slab. Based on 2-dimensional finite element analyses using linear elastic-perfectly plastic soil model obeying Mohr-Coulomb failure criterion, effects of pile-plugged jet grouted slab on the stability during excavation were examined, and a parametric study was also conducted to investigate critical influencing parameters in the estimation of reliable pile tension loads. Finally, based on the Modified Cam-Clay model, pile tension loads were estimated by considering on-going consolidation state of the Singapore clay deposit and the range of critical parameters observed during laboratory tests.

Static and Repeat Loads Model Test on Soft Clay Layer due to the Geotextile Reinforcement (토목섬유로 보강된 연약지반의 정.동적 모형실험)

  • Kim, Young-Su;Kwon, Sung-Mok;Kim, Yeun-Wook;Kim, Hyoung-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.232-239
    • /
    • 2005
  • Recently geosynthetics that can be constructed on soft ground have been used for reinforcement and separation in various ways. Through laboratory model tests and numerical analysis, in this study, estimated the suitability of cable elements and appropriate input factors considering loading effect in modeling of geosynthetics. First, in laboratory model tests, geosynthetics were constructed on the clay, and covered with the thickness, 7.5cm of sand mat. And then static and dynamic model tests were performed measuring loading, settlement, ground lateral displacement, and displacements of geosynthetics, but, for cyclic loading, bearing capacity increased linearly with stiff slop because cyclic loading with constant cyclic pressure compacted the ground. Numerical analysis were performed with FLAC 4.0 2D using Mohr-Coulomb and Modified Cam-Clay models, and they compared with the results of model tests. Cable elements of FLAC in modeling geosynthetics couldn't consider the characteristics of geosynthetics that increase shear strength between geosynthetics and clay according to the loading increase. Therefore, in this study, appropriate equation that can consider loading effects in Cable elements was proposed by Case Study.

  • PDF

An elastoplastic model for structured clays

  • Chen, Bo;Xu, Qiang;Sun, De'an
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.213-231
    • /
    • 2014
  • An elastoplastic model for structured clays, which is formulated based on the fact that the difference in mechanical behavior of structured and reconstituted clays is caused by the change of fabric in the post-yield deformation range, is present in this paper. This model is developed from an elastoplastic model for overconsolidated reconstituted clays, by considering that the variation in the yield surface of structured clays is similar to that of overconsolidated reconstituted clays. However, in order to describe the mechanical behavior of structured clays with precision, the model takes the bonding and parabolic strength envelope into consideration. Compared with the Cam-clay model, only two new parameters are required in the model for structured clays, which can be determined from isotropic compression and triaxial shear tests at different confining pressures. The comparison of model predictions and results of drained and undrained triaxial shear tests on four different marine clays shows that the model can capture reasonable well the strength and deformation characteristics of structured clays, including negative and positive dilatancy, strain-hardening and softening during shearing.

Behaviour of Foundation Ground with Marine Clay in Anisotropy (이방성을 갖는 해성점토 기초지반의 거동해석)

  • Kim, Myeon-Su;Lee, Kang-Il;Kim, Chan-Ki;Yun, Jung-Mann;Baek, Won-Jin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.11-21
    • /
    • 2015
  • This study aims at investigating of the behavioral characteristics of foundation ground subjected to a strip load in anisotropy. Using marine clays sampled at Shihwa area, a series of laboratory tests including triaxial compressive test, plane strain compressive and expansion tests that allows horizontal deformation only and zero strain (${\varepsilon}_2$) in the direction of intermediate stress (${\sigma}_2$) are conducted. In addition, a numerical analysis using parameters obtained from the tests is carried out. In the numerical analysis, Cam-clay model that simulates the behavior of natural deposited clay properly is adopted. The analysis results show that the vertical displacements of the plane strain compressive tests are relatively larger than those of triaxial compressive tests by 18-25%. Likewise, the horizontal displacements is 13-19% larger.

The Applicability of Numerical Analysis Technique to The Soft Clayey Foundation Improved by Sand Drain (Sand Drain 지반에 대한 변형해석법의 적용성)

  • Lee, Jean-Soo;Lee, Moon-Soo;Jang, Chul
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.96-105
    • /
    • 1998
  • Soil properties, drain conditions and numerical analysis technique have great influence upon consolidation behavior. In relevant to the above described fact, this paper aims to examining the applicability of prediction model of consolidation as well as deformation characteristics for soft clayey foundation improved by sand drain. A case study for actual foundation of Kwangyang steel works was performed. Single drain consolidation model proposed by Hansbo and Biot's consolidation theory coupled with modified Cam-clay model developed during the research were employed for the FEM numerical analysis of the foundation. Both smear effect and drain capacity were taken into account for the analysis. Finally the applicability of the newly developed technique to the behavior of foundation composed of soft clay proved satisfactory.

  • PDF

Study on the Time Dependent Stress-Strain Behavior of Clay (점성토의 시간의존적 응력 - 변형 특성에 관한 연구)

  • 지인택;강우묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.134-153
    • /
    • 1988
  • This paper was carried out to investigate the existence of a unique stress- strain behavior by obtaining some factors influencing the time dependent stress- strain behavior of clay. The results obtained from this study were summarized as follows ; 1. The relationship between stress ratro and strain in normally consolidated clay was in- dependent on pre-shear consolidation pressure. Therefore, shear strain could be expressed as a function with stress ratio. 2. The constitutive equation of shear strain on Modified Carn Clay Model coincided better with the observed value than Cam Clay Model. 3. The relationships between deviator stress and shear strain, between pore water pressure and shear strain were unified by the mean equivalent pressure. 4. The shear strain contour in norrnally consolidated clay was increased linearly through origin, but that in overconsolidated clay was not in accordance with the result of the former. 5. Because the effective stress path of normally consolidated clay was unified by the mean equivalent pressure, state boundary surface in (e,p,q) space was transformed into two dimensional surface. But it was considered to be suitable that the unified stress- strain in overconsolidated clay be expressed by a function with overconsolidation ratio. 6. The deviator for constant strain was increased linearly with increment of strain rate ($\varepsilon$) on semi-log scale, but pore water pressure was decreased. 7. The behavior of stress relaxation was transformed from linear to curvilinear with inc - rement of strain rate before stress relaxation test, and pore water pressure was increased in total range. 8. The strain of creep was increased linearly with increment of time on semi-log scale. The greater the strain rate before creep test became, the greater the increment of strain of creep became. And the pore water pressure during creep test was increased generally with increment of time on semi-log scale.

  • PDF

Numerical modelling of Haarajoki test embankment on soft clays with and without PVDs

  • Yildiz, Abdulazim;Uysal, Firdevs
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.707-726
    • /
    • 2015
  • This paper investigates the time dependent behaviour of Haarajoki test embankment on soft structured clay deposit. Half of the embankment is constructed on an area improved with prefabricated vertical drains, while the other half is constructed on the natural deposit without any ground improvement. To analyse the PVD-improved subsoil, axisymmetric vertical drains were converted into equivalent plane strain conditions using three different approaches. The construction and consolidation of the embankment are analysed with the finite element method using a recently developed anisotropic model for time-dependent behaviour of soft clays. The constitutive model, namely ACM-S accounts for combined effects of plastic anisotropy, interparticle bonding and degradation of bonds and creep. For comparison, the problem is also analysed with isotropic Soft Soil Creep and Modified Cam Clay models. The results of the numerical analyses are compared with the field measurements. The results show that neglecting effects of anisotropy, destructuration and creep may lead to inaccurate predictions of soft clay response. Additionally, the numerical results show that the matching methods accurately predict the consolidation behaviour of the embankment on PVD improved soft clays and provide a useful tool for engineering practice.

Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils (불포화토의 열·탄소성 거동 분석을 위한 Barcelona Basic Model 소개)

  • Lee, Changsoo;Yoon, Seok;Lee, Jaewon;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.38-51
    • /
    • 2019
  • Barcelona Basic Model (BBM) can describe not only swelling owing to decrease in effective stress, but also wetting-induced swelling due to decrease in suction. And the BBM can also consider increase in cohesion and apparent preconsolidation stress with suction, and decrease in the apparent preconsolidation stress with temperature. Therefore, the BBM is widely used all over the world to predict and to analyze coupled thermo-hydro-mechanical behavior of bentonite which is considered as buffer materials at the engineered barrier system in the high-level radioactive waste disposal system. However, the BBM is not well known in Korea, so this paper introduce the BBM to Korean rock engineers and geotechnical engineers. In this study, Modified Cam Clay (MCC) model is introduced before all, because the BBM was first developed as an extension of the MCC model to unsaturated soil conditions. Then, the thermo-elasto-plastic version of the BBM is described in detail.