• Title/Summary/Keyword: Calibration process

Search Result 759, Processing Time 0.027 seconds

Comparison of using CBCT with CT Simulator for Radiation dose of Treatment Planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Kim, Dae-Young;Choi, Ji-Won;Cho, Jung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.742-749
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

Quantitative Analysis of Paeoniflorin and Paeonol in Peony Extracts and Quality Control Standards (모란 추출액에서 paeoniflorin과 paeonol 동시 정량 분석 및 화장품 원료의 품질관리 기준 설정)

  • Yun, Ki-Hun;Chi, Yong-Ha;Lee, Dong-Kyu;Paik, Soo-Heui
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.235-246
    • /
    • 2018
  • Paeony has pharmacological activities such as anti-inflammatory, anti-allergic, anti-bacterial, central inhibitory, gastric secretion inhibition, and antispasmodic activities. In addition, its antioxidant activity and whitening effect being reported, thus it is being explored as raw materials for cosmetics. We compared the changes in the contents of paeoniflorin and paeonol in Peony extracts, depending on the changes of extracting solvents, temperature and time. The HPLC method was set up for simultaneous analysis, the system suitabilities were confirmed by using the calibration curves and the QC samples for each assay batch. Paeonol was detected only in roots, and paeoniflorin was higher in leaf and flower than root. Higher concentrations of both ingredients were extracted when the root was used after grinding to a suitable size, and when 30% 1,3-butylene glycol was used as the extraction solvent. Also the concentrations tended to increase at higher temperature and longer time, but the increase was gradual at over $75^{\circ}C$ and 4 hours. The ratio of root, leaf and flower was determined to be 2+2+1g/0.5kg of batch, reaching the contents criteria of paeoniflorin and paeonol. Finally, we selected as the best extraction condition when the raw materials are mixed with 2+2+1g/0.5kg and extracted with 30% 1,3-butylene glycol as an extraction solvent at $75^{\circ}C$ for 4 hours, considering both the concentrations of two components and the cost of raw materials and manufacturing process, The extraction units were scaled up to 10 kg under this condition.

Comparison of using CBCT with CT simulator for radiation dose of treatment planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Cho, jung-keun;Kim, dae-young;Han, tae-jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1159-1166
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

  • PDF

Identification of Flavonoids from Extracts of Opuntia ficus-indica var. saboten and Content Determination of Marker Components Using HPLC-PDA (손바닥선인장 추출물의 플라보노이드 구조 규명 및 HPLC-PDA를 이용한 지표성분의 함량 분석)

  • Park, Seungbae;Kang, Dong Hyeon;Jin, Changbae;Kim, Hyoung Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.210-219
    • /
    • 2017
  • This study aimed to establish an optimal extraction process and high-performance liquid chromatography (HPLC)-photodiode array (PDA) analytical method for determination of marker compounds, dihydrokaempferol (DHK) and 3-O-methylquercetin (3-MeQ), as a part of materials standardization for the development of health functional foods from stems of Opuntia ficus-indica var. saboten (OFS). The quantitative determination method of marker compounds was optimized by HPLC analysis, and the correlation coefficient for the calibration curve showed very good linearity. The HPLC-PDA method was applied successfully to quantification of marker compounds in OFS after validation of the method in terms of linearity, accuracy, and precision. Ethanolic extracts from stems of O. ficus-indica var. saboten (OFSEs) were evaluated by reflux extraction at 70 and $80^{\circ}C$ with 50, 70, and 80% ethanol for 3, 4, 5, and 6 h. Among OFSEs, OFS70E at $80^{\circ}C$ showed the highest contents of DHK and 3-MeQ of $26.42{\pm}0.65$ and $3.88{\pm}0.29mg/OFS100g$, respectively. Furthermore, OFSEs were determined for their antioxidant activities by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and lipid peroxidation (LPO) inhibitory activities in rat liver homogenate. OFS70E at $70^{\circ}C$ showed the most potent antioxidant activities with $IC_{50}$ values of $1.19{\pm}0.11$ and $0.89{\pm}0.09mg/mL$ in the DPPH radical scavenging and LPO inhibitory assays, respectively. To identify active components of OFS, various chromatographic separation of OFS70E led to isolation of 11 flavonoids: dihydrokaempferol, dihydroquercetin, 3-O-methylquercetin, quercetin, isorhamnetin 3-O-glucoside, isorhamnetin 3-O-galactoside, narcissin, kaempferol 7-O-glucoside, quercetin 3-O-galactoside, isorhamnetin, and kaempferol 3-O-rutinoside. The results suggest that standardization of DHK in OFSEs using HPLC-PDA analysis would be an acceptable method for the development of health functional foods.

The analysis of pesticide residue in leafy vegetables using the modified QuEChERS pre-treatment methods (QuEChERS 시료 처리법을 활용한 엽채류 중 잔류농약분석)

  • Kim, Yang-Hyeon;Hong, Su-Myeong;Son, Kyung-Ae;Lee, Ju-Young;Min, Zaw Win;Kwon, Hye-Young;Kim, Taek-Kyum;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.2
    • /
    • pp.121-130
    • /
    • 2012
  • In analyzing pesticide residue, LLE (liquid liquid extraction) is generally applied as one of the existing methods, but needed quite a lot of organic solvents and analytical apparatuses for the sample pre-treatment. In addition to its long analysis time and complex analytical processes, it is required to develop a more rapid and efficient method at present. In order to establish an economic and simple pesticide residue analytical method, this study carried out a comparative experiment on the existing analytical method with a new sample pre-treatment method named QuEChERS (quick, easy, cheap, effective, rugged and safe), which extracts and refines pesticide components by directly adding solid powder into the sample. Both the two analytical methods showed favorable values of correlation coefficient ($R^2$ > 0.99) of calibration curves. In terms of the detection limit (identification limit), imidacloprid showed 0.02 mg/kg, while the rest of pesticides showed a level around 0.05 mg/kg. The results of this experiment revealed that the recovery of LLE was 92.8-100.9% and the RSD was below 2.5%. On the other hand, the recovery of QuEChERS was 92.2-101.6% and RSD was below 1.9%. As a result of comparing the amount of pesticide residue by the time between the two analytical methods by using Paired t-Test, there was no significant difference between the two analytical methods as the p-value ranged from 0.3148-0.9890. Considering the results of the two methods, the QuEChERS method had similar recovery, compared to the analytical method using the existing LLE, and the analytical time was shortened by about one fourth of that of the existing method. Moreover, since it excludes the use of harmful organic solvents like dichloromethane during the process of extraction, thus leading to protecting experimenters health and remarkably reducing the amount of disused solvents, it is judged as an echo-friendly and economic analytical method.

Development of Mixed-bed Ion Exchange Resin Capsule for Water Quality Monitoring (수질 중 질소와 인 모니터링을 위한 혼합이온교환수지 캡슐의 개발)

  • Park, Chang-Jin;Kim, Dong-Kuk;Ok, Yong-Sik;Ryu, Kyung-Ryul;Lee, Ju-Young;Zhang, Yong-Seon;Yang, Jae-E
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.344-350
    • /
    • 2004
  • This study was conducted to develop and assess the applicability of mixed-bed ion exchange resin capsules for water quality monitoring in small agricultural watershed. Recoveries of resin capsules for inorganic N and P ranged from 96 to 102%. The net activation energies and pseudo-thermodynamic parameters, such as ${\Delta}G^{o\ddag},\;{\Delta}H^{o\ddag},\;and\;{\Delta}S^{o\ddag}$ for ion adsorption by resin capsules, exhibited relatively low values, indicating the process might be governed by chemical reactions such as diffusion. However, those values increased with temperature coinciding with the theory. The reaction reached pseudo-equilibrium within 24 hours for $NH_4-N\;and\;NO_3-N$, and only 8 hours for $PO_4-P$, respectively. The selectivity of resin capsules were in the order of $NO_3\;^-\;>\;NH_4\;^+\;>\;PO_4\;^{3-}$, coinciding with that of encapsulated Amberlite IRN-150 resin. At the initial state of equilibrium, the resin adsorption quantity was linearly proportional to the mass of ions in the streams, but the rate of movement leveled off, following Langmuir-type sorption isotherm. The overall results demonstrated that the resin capsule system was suitable for water quality monitoring in small agricultural watershed, judging from the reaction mechanism(s) of the resin capsule and the significance of model in field calibration.

Inhibitory Effects of Ethanolic Extracts from Aster glehni on Xanthine Oxidase and Content Determination of Bioactive Components Using HPLC-UV (섬쑥부쟁이 에탄올 추출물의 잔틴산화효소 저해 효능 및 HPLC-UV를 이용한 유효성분의 함량 분석)

  • Kang, Dong Hyeon;Han, Eun Hye;Jin, Changbae;Kim, Hyoung Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.11
    • /
    • pp.1610-1616
    • /
    • 2016
  • This study aimed to establish an optimal extraction process and high performance liquid chromatography-ultraviolet (HPLC-UV) analytical method for determination of 3,5-dicaffeoylquinic acid (3,5-DCQA) as a part of materials standardization for the development of a xanthine oxidase inhibitor as a health functional food. The quantitative determination method of 3,5-DCQA as a marker compound was optimized by HPLC analysis using a Luna RP-18 column, and the correlation coefficient for the calibration curve showed good linearity of more than 0.9999 using a gradient eluent of water (1% acetic acid) and methanol as the mobile phase at a flow rate of 1.0 mL/min and a detection wavelength of 320 nm. The HPLC-UV method was applied successfully to quantification of the marker compound (3,5-DCQA) in Aster glehni extracts after validation of the method with linearity, accuracy, and precision. Ethanolic extracts of A. glehni (AGEs) were evaluated by reflux extraction at 70 and $80^{\circ}C$ with 30, 50, 70, and 80% ethanol for 3, 4, 5, and 6 h, respectively. Among AGEs, 70% AGE at $70^{\circ}C$ showed the highest content of 3,5-DCQA of $52.59{\pm}3.45mg/100g$ A. glehni. Furthermore, AGEs were analyzed for their inhibitory activities on uric acid production by the xanthine/xanthine oxidase system. The 70% AGE at $70^{\circ}C$ showed the most potent inhibitory activity with $IC_{50}$ values of $77.01{\pm}3.13{\sim}89.96{\pm}3.08{\mu}g/mL$. The results suggest that standardization of 3,5-DCQA in AGEs using HPLC-UV analysis would be an acceptable method for the development of health functional foods.

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.

Residual evaluation of ethyl formate in soil and crops after fumigation in green house (에틸포메이트의 하우스 농작물 훈증처리 후 토양 및 작물 중 잔류양상)

  • Hwang-Ju Jeon;Kyeongnam Kim;Chaeeun Kim;Yerin Cho;Tae-Hyung Kwon;Byung-Ho Lee;Sung-Eun Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.316-324
    • /
    • 2022
  • Ethyl formate (EF) is a potent fumigant replacing methyl bromide. The use of EF is limited to a quarantine process. Appling EF to agricultural field as a safe insecticide in greenhouse give us valuable benefits including less residual concern. In this regard, residual pattern after EF fumigation in greenhouse should be undertaken. In the previous study, we have established agricultural control concentration of EF to control pests in a greenhouse. EF was fumigated at 5 g m-3 level for 2 h. The concentration of EF inside a greenhouse was analyzed to be 4.1-4.3 g m-3 at 30 min after fumigation. To prepare an analytical method for residues in cucumber crops and soil in the greenhouse, the limit of detection(LOD) of the method was 100ng g-1 and the limit of quantitation(LOQ) of this method was 300 ng g-1. R2 values of calibration curves for crops and soil were 0.991-0.997. In samples collected immediately after ventilation, EF concentration was determined to be below LOQ level. In addition, EF level was below LOQ in samples collected at 3 h after ventilation except that leaf samples of melon during the flowering period showed a level of 1,068.9 ng g-1. Taken together, these results indicate that EF used in quarantine can be applied to agricultural fields without residual issue as an effective fumigant for insect pest control.