DOI QR코드

DOI QR Code

Residual evaluation of ethyl formate in soil and crops after fumigation in green house

에틸포메이트의 하우스 농작물 훈증처리 후 토양 및 작물 중 잔류양상

  • Hwang-Ju Jeon (Institute for Evaluation of Safety and Quality of Agricultural Products, Kyungpook National University) ;
  • Kyeongnam Kim (Department of Applied Biosciences, Kyungpook National University) ;
  • Chaeeun Kim (Department of Applied Biosciences, Kyungpook National University) ;
  • Yerin Cho (Department of Applied Biosciences, Kyungpook National University) ;
  • Tae-Hyung Kwon (Institute for Evaluation of Safety and Quality of Agricultural Products, Kyungpook National University) ;
  • Byung-Ho Lee (Institute for Evaluation of Safety and Quality of Agricultural Products, Kyungpook National University) ;
  • Sung-Eun Lee (Institute for Evaluation of Safety and Quality of Agricultural Products, Kyungpook National University)
  • 전황주 (경북대학교 농산물품질.안전성평가연구소) ;
  • 김경남 (경북대학교 응용생명과학과) ;
  • 김채은 (경북대학교 응용생명과학과) ;
  • 조예린 (경북대학교 응용생명과학과) ;
  • 권태형 (경북대학교 농산물품질.안전성평가연구소) ;
  • 이병호 (경북대학교 농산물품질.안전성평가연구소) ;
  • 이성은 (경북대학교 농산물품질.안전성평가연구소)
  • Received : 2022.08.27
  • Accepted : 2022.09.16
  • Published : 2022.09.30

Abstract

Ethyl formate (EF) is a potent fumigant replacing methyl bromide. The use of EF is limited to a quarantine process. Appling EF to agricultural field as a safe insecticide in greenhouse give us valuable benefits including less residual concern. In this regard, residual pattern after EF fumigation in greenhouse should be undertaken. In the previous study, we have established agricultural control concentration of EF to control pests in a greenhouse. EF was fumigated at 5 g m-3 level for 2 h. The concentration of EF inside a greenhouse was analyzed to be 4.1-4.3 g m-3 at 30 min after fumigation. To prepare an analytical method for residues in cucumber crops and soil in the greenhouse, the limit of detection(LOD) of the method was 100ng g-1 and the limit of quantitation(LOQ) of this method was 300 ng g-1. R2 values of calibration curves for crops and soil were 0.991-0.997. In samples collected immediately after ventilation, EF concentration was determined to be below LOQ level. In addition, EF level was below LOQ in samples collected at 3 h after ventilation except that leaf samples of melon during the flowering period showed a level of 1,068.9 ng g-1. Taken together, these results indicate that EF used in quarantine can be applied to agricultural fields without residual issue as an effective fumigant for insect pest control.

본 연구는 비닐하우스로 대표되는 시설농업에서의 효과적이고 효율적인 해충방제를 위해 수입 농산물의 검역단계에서 사용되고 있는 훈증물질 중 하나인 에틸포메이트를 적용하여 박과작물인 수박, 멜론, 애호박에 훈증처리 후 작물 및 토양에의 잔류양상을 연구하였다. 이전 연구를 통하여 해충방제에 효과적인 에틸포메이트의 농업적 방제농도를 설정하였으며, 밀폐된 비닐하우스에서 농업적 방제농도의 에틸포메이트를 2시간 동안 훈증처리하였으며 훈증처리 이후 하우스를 완전개방하여 환기를 실시하였다. 훈증처리 30분 후 하우스 내의 에틸포메이트 농도는 4.1~4.3 g m-3로 균일한 농도로 훈증처리가 잘 되었다. 박과작물 및 하우스 내 토양의 잔류분석을 위한 분석법 작성을 위해 표준품을 이용하여 검량선을 작성한 결과 헤드스페이스 샘플러-가스크로마토그래피 기기의 LOD는 100 ng g-1 수준이었으며, LOQ는 300 ng g-1 수준이었다. 각 작물별 및 토양의 검량선의 R2 값은 0.991~0.997의 수준으로 양호하였다. 환기 후 바로 채취한 시료에서는 모두 검출되지 않았거나 LOQ 이하의 수준으로 검출되었으며, 환기 후 3시간 이후의 시료에서는 개화기의 멜론에서만 1,068.9 ng g-1의 에틸포메이트가 검출되었다. 검출된 잔류량의 양상을 종합하여 보았을 때, 환기 직후의 시료에서 검출된 양이 환기 후 3시간 경과된 시료보다 낮은 잔류양상을 보였다. 이는 분석과정에 걸리는 시간차에 의한 실험적 한계에 의한 결과라 할 수 있다. 따라서 이후의 에틸포메이트의 잔류량 분석 연구에 있어 빠른 분해양상을 주된 변화요인으로 고려하여 연구를 진행할 필요성이 요구된다. 위 연구결과를 토대로 하여 검역분야에서 사용중인 에틸포메이트를 농업분야에 적용하여 잔류에 대한 걱정이 없으며, 해충방제에 효과적인 훈증제로 사용할 수 있을 것으로 기대한다.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through the Crop Viruses and Pests Response Industry Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (321098-3).

References

  1. Desmarchelier JM, FM Johnston and LT Vu. 1999. Ethyl formate, formic acid and ethanol in air, wheat, barley and sultanas: analysis of natural levels and fumigant residues. Pestic. Sci. 55:815-824. https://doi.org/10.1002/(SICI)1096-9063(199908)55:8<815::AID-PS22>3.0.CO;2-4
  2. EPA. 2020. CompTox Chemicals Dashboard. United States Environmental Protection Agency. Retrieved from https://comptox.epa.gov/dashboard/chemical/details/DTXSID6040117
  3. Food and Drug Administration. 1984. Code of Federal Regulations, 21, 3, 184.1295.
  4. Kawagoe JC, AE Abrams, AP Lourie and SS Walse. 2022. Ethyl formate dilution in carbon dioxide for fumigation control of the brown marmorated stink bug Halyomorpha halys, Stal (Hemiptera: Pentatomidae). Pest Manag. Sci. 78:3090-3097. https://doi.org/10.1002/ps.6935
  5. Kim KN, MG Park, YH Lee, HJ Jeon, TH Kwon, CE Kim, JE Park, BH Lee, JO Yang and SE Lee. 2021. Synergistic effects and toxic mechanism of phosphine with ethyl formate against citrus mealybug(Planococcus citri). Appl. Sci. 21:9877. https://doi.org/10.3390/app11219877
  6. Krishna H, RF Ryan, A Munez, G Hirst, H Yoshihara and S Barton. 2005. VAPORMATE: Disinfestation of Philippine export bananas. In: Proceedings of the 2005 Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reduction. San Diego, CA, USA.
  7. Kwon TH, IH Jeong, BH Lee and CG Park. 2019. A new disinfestation approach against some greenhouse pests using ethyl formate fumigation. Korean J. Appl. Bot. 58:341-345. https://doi.org/10.5656/KSAE.2019.11.0.051
  8. Lee JS, HK Kim, Y Kyung, GH Park, BH Lee, JO Yang, HN Koo and GH Kim. 2018. Fumigation activity of ethyl formate and phosphine against Tetranychus urticae (Acari: Tetranychidae) on imported sweet pumpkin. J. Econ. Entomol. 111:1625-1632. https://doi.org/10.1093/jee/toy090
  9. Lee MJ and HY Kim. 2017. A 90-day inhalation toxicity study of ethyl formate in rats. Toxicol. Res. 33:333-342. https://doi.org/10.5487/TR.2017.33.4.333
  10. Mata-Segreda JF. 2007. The proton inventory technique in a dual mechanistic system: the spontaneous hydrolysis of ethyl formate. Isot. Environ. Health Stud. 43:17-21. https://doi.org/10.1080/10256010600990401
  11. Ning H, J Wu, L Ma, W Ren, DF Davidson and RK Hanson. 2017. Combined ab initio, kinetic modeling, and shock tube study of the thermal decomposition of ethyl formate. J. Phys. Chem. A 121:6568-6579. https://doi.org/10.1021/acs.jpca.7b05382
  12. Smallwood AW. 1978. Analysis of formic acid in air samples. Am. Ind. Hyg. Assoc. J. 39:151-153. https://doi.org/10.1080/0002889778507729
  13. Sokoro A, D Lehotay, J Eichhorst and R Treble. 2007. Quantitative endogenous formate analysis in plasma using headspace gas chromatography without a headspace analyzer. J. Anal. Toxicol. 31:342-346. https://doi.org/10.1093/jat/31.6.342
  14. WHO. 1997. Evaluation of Certain Food Additives and Contaminants. World Health Organization. Geneva.
  15. Yamashita I, K Lino, Y Nemoto and S Yoshikawa. 1977. Studies on flavor development in strawberries. 4. Biosynthesis of volatile alcohol and esters from aldehyde during ripening. J. Agric. Food Chem. 25:1165-1168. https://doi.org/10.1021/jf60213a027
  16. Zaitoon A, LT Lim and C Scott-Dupree. 2019. Synthesis and characterization of ethyl formate precursor for activated release application. J. Agric. Food Chem. 67:13914-13921. https://doi.org/10.1021/acs.jafc.9b06335