• Title/Summary/Keyword: Calibration process

Search Result 762, Processing Time 0.032 seconds

Development of 3-dimensional measuring robot cell (3차원 측정 로보트 셀 개발)

  • Park, Kang;Cho, Koung-Rae;Shin, Hyun-Oh;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1139-1143
    • /
    • 1991
  • Using industrial robots and sensors, we developed an inline car body inspection system which proposes high flexibility and sufficient accuracy. Car Body Inspection(CBI) cell consists of two industrial robots, two corresponding carriages, camera vision system, a process computer with multi-tasking ability and several LDS's. As industrial robots guarantee sufficient repeatabilities, the CBI cell adopts the concept of relative measurement instead of that of absolute measurement. By comparing the actual measured data with reference data, the dimensional errors of the corresponding points can be calculated. The length of the robot arms changes according to ambient temperature and it affects the measuring accuracy. To compensate this error, a robot arm calibration process was realized. By measuring a reference jig, the differential changes of the robot arms due to temperature fluctuation can be calculated and compensated.

  • PDF

A Study on the Uncertainty of Estimation in Vibration Test for the Machine Parts (가공 기계부품 고유진동수 해석과 측정에 관한 연구)

  • Hwang, Jae-Deok;Kim, Chae-Sil;Cho, Sung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2014
  • Resonance refers to the magnification of a structural response which occurs when a linear lightly damped system is driven with a sinusoidal input at its natural frequency. An exploratory vibration test (a natural frequency measurement test) is very important for the vibration testing of machine parts, as the value measured in an actual laboratory affects test results. For this reason, it is necessary to estimate the measurement uncertainty to verify the reliability of this type of test. In this study, measurement uncertainty is estimated based on three uncertainty factors. The uncertain factors are the measured points in the machine parts, the resolution of the vibration equipment, and uncertainty of the calibration certificate.

Utilization of Vision in Off-Line Teaching for assembly robot (조립용 로봇의 오프라인 교시를 위한 영상 정보의 이용에 관한 연구)

  • 안철기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.543-548
    • /
    • 2000
  • In this study, an interactive programming method for robot in electronic part assembly task is proposed. Many of industrial robots are still taught and programmed by a teach pendant. The robot is guided by a human operator to the desired application locations. These motions are recorded and are later edited, within the robotic language using in the robot controller, and play back repetitively to perform robot task. This conventional teaching method is time-consuming and somewhat dangerous. In the proposed method, the operator teaches the desired locations on the image acquired through CCD camera mounted on the robot hand. The robotic language program is automatically generated and downloaded to the robot controller. This teaching process is implemented through an off-line programming software. The OLP is developed for an robotic assembly system used in this study. In order to transform the location on image coordinates into robot coordinates, a calibration process is established. The proposed teaching method is implemented and evaluated on an assembly system for soldering electronic parts on a circuit board. A six-axis articulated robot executes assembly task according to the off-line teaching in the system.

  • PDF

Switched-Capacitor Based Digital Temperature Sensor Implemented in 0.35-µm CMOS Process

  • Kim, Su-Bin;Choi, Jeon-Woong;Lee, Tae-Gyu;Lee, Ki-Ppeum;Jeong, Hang-Geun
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.21-24
    • /
    • 2018
  • A temperature sensor with a binary output was implemented using switched-capacitor circuits in a $0.35-{\mu}m$ CMOS(com-plementary metal-oxide semiconductor) process. The measured temperature exhibited good agreement with the oven temperature after calibration. The measured power consumption was 5.61 mW, slightly lower than the simulated power consumption of 6.63 mW.

Application of the LISFLOOD-FP model for flood stage prediction on the lower mankyung river (만경강 하류 홍수위 예측을 위한 LISFLOOD-FP 모형의 적용성 검토)

  • Jeon, Ho-Seong;Kim, Ji-sung;Kim, Kyu-ho;Hong, il
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • LISFLOOD-FP model in which channel flows are resolved separately from the floodplain flows using either a kinematic or diffusive wave approximation has been used to analyze flooding behavior on the lower Mankyung River influenced by backwater. A calibration and validation process was applied using the previous flood events to assess the model performance. Sensitivity analysis was conducted for main calibrated parameters, such as Manning roughness coefficient and downstream boundary condition. Also, we examined the effect of warm-up for the initial conditions. The results show that the computed hydrograph is in good agreement with measured data on the study reach, even though it was a hydrologic kinematic wave model. The sensitive analysis show that the difference between the computed results may be greater depending on the used calibrated parameters and that the sufficient calibration/validation process against various flood events is necessary. If the flood inundation simulation is performed using the validated model, it is expected to be able to contribute about river planning and policy decision-making for flood damage reduction.

A Design of Signal Processing Analog Front-End IC for Automotive Piezo-Resistive Type Pressure Sensor (Automotive Piezo-Resistive Type Pressure Sensor 신호 처리 아날로그 전단부 IC 설계)

  • Cho, Sunghun;Lee, Dongsoo;Choi, Jinwook;Choi, Seungwon;Park, Sanghyun;Lee, Juri;Lee, Kang-Yoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.38-48
    • /
    • 2014
  • In this paper, a design of Signal Processing Analog Front-End IC for Automotive Piezo-Resistive Type Pressure Sensor is presented. In modern society, as the car turns to go from mechanical to electronic technology, the accuracy and reliability of electronic parts required importantly. In order to improve these points, Programmable Gain Amplifier (PGA) amplifies the received signal in accordance with gain for increasing the accuracy after PRT Sensor is operated to change physical pressure signals to electrical signals. The signal amplified from PGA is processed by Digital blocks like ADC, CMC and DAC. After going through this process, it is possible to determine the electrical signal to physical pressure signal. As processing analog signal to digital signal, reliability and accuracy in Analog Front-End IC is increased. The current consumption of IC is 5.32mA. The die area of the fabricated IC is $1.94mm{\times}1.94mm$.

Seamless Superimposition Technique of Virtual Objects for AR System of Excavator Based on Image Processing (굴삭기 AR 시스템을 위한 이미지 프로세싱 기반 가상 이미지 중첩 기술)

  • Lee, Kanghyeok;Park, Joohwan;Kang, Hojun;Shin, Dohyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.21-29
    • /
    • 2017
  • Recently, with having a great interest of the general public for the AR (Augmented Reality) technology, there have been lots of study to improve efficiency of a construction equipment with applying the AR technology to a construction equipment. The clear extrinsic calibration is essential to applying AR technology at the construction site without any error which came from superimposition between 'Real world' and 'Virtual world'. However, on the construction site, the clear extrinsic calibration is not possible, because of lack of time and budget for the specific survey, also, the huge error of the outdoor tracking system such as gyro, GPS system and so on. In this study, we do research about seamless superposition with unclear extrinsic calibration and the image process method for making AR navigator operating in the excavator. Based on this study, we figure that we can fully develop the AR navigator for the excavator. Furthermore, thereby operating AR navigator at many construction sites, we expect that the efficiency of the excavator will be improved. In addition, we can develop AR navigator for not only a excavator but all about construction equipment.

Application of AutoFom III equipment for prediction of primal and commercial cut weight of Korean pig carcasses

  • Choi, Jung Seok;Kwon, Ki Mun;Lee, Young Kyu;Joeng, Jang Uk;Lee, Kyung Ok;Jin, Sang Keun;Choi, Yang Il;Lee, Jae Joon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1670-1676
    • /
    • 2018
  • Objective: This study was conducted to enable on-line prediction of primal and commercial cut weights in Korean slaughter pigs by AutoFom III, which non-invasively scans pig carcasses early after slaughter using ultrasonic sensors. Methods: A total of 162 Landrace, Yorkshire, and Duroc (LYD) pigs and 154 LYD pigs representing the yearly Korean slaughter distribution were included in the calibration and validation dataset, respectively. Partial least squares (PLS) models were developed for prediction of the weight of deboned shoulder blade, shoulder picnic, belly, loin, and ham. In addition, AutoFom III's ability to predict the weight of the commercial cuts of spare rib, jowl, false lean, back rib, diaphragm, and tenderloin was investigated. Each cut was manually prepared by local butchers and then recorded. Results: The cross-validated prediction accuracy ($R^2cv$) of the calibration models for deboned shoulder blade, shoulder picnic, loin, belly, and ham ranged from 0.77 to 0.86. The $R^2cv$ for tenderloin, spare rib, diaphragm, false lean, jowl, and back rib ranged from 0.34 to 0.62. Because the $R^2cv$ of the latter commercial cuts were less than 0.65, AutoFom III was less accurate for the prediction of those cuts. The root mean squares error of cross validation calibration (RMSECV) model was comparable to the root mean squares error of prediction (RMSEP), although the RMSECV was numerically higher than RMSEP for the deboned shoulder blade and belly. Conclusion: AutoFom III predicts the weight of deboned shoulder blade, shoulder picnic, loin, belly, and ham with high accuracy, and is a suitable process analytical tool for sorting pork primals in Korea. However, AutoFom III's prediction of smaller commercial Korean cuts is less accurate, which may be attributed to the lack of anatomical reference points and the lack of a good correlation between the scanned area of the carcass and those traits.

1V 1.6-GS/s 6-bit Flash ADC with Clock Calibration Circuit (클록 보정회로를 가진 1V 1.6-GS/s 6-bit Flash ADC)

  • Kim, Sang-Hun;Hong, Sang-Geun;Lee, Han-Yeol;Park, Won-Ki;Lee, Wang-Yong;Lee, Sung-Chul;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1847-1855
    • /
    • 2012
  • A 1V 1.6-GS/s 6-bit flash analog-to-digital converter (ADC) with a clock calibration circuit is proposed. A single track/hold circuit with a bootstrapped analog switch is used as an input stage with a supply voltage of 1V for the high speed operation. Two preamplifier-arrays and each comparator composed of two-stage are implemented for the reduction of analog noises and high speed operation. The clock calibration circuit in the proposed flash ADC improves the dynamic performance of the entire flash ADC by optimizing the duty cycle and phase of the clock. It adjusts the reset and evaluation time of the clock for the comparator by controlling the duty cycle of the clock. The proposed 1.6-GS/s 6-bit flash ADC is fabricated in a 1V 90nm 1-poly 9-metal CMOS process. The measured SNDR is 32.8 dB for a 800 MHz analog input signal. The measured DNL and INL are +0.38/-0.37 LSB, +0.64/-0.64 LSB, respectively. The power consumption and chip area are $800{\times}500{\mu}m2$ and 193.02mW.

Effect Evaluation by Activity and Geometry Difference in Calibration on LSC (LSC 장비를 이용한 교정시 Activity 및 Geometry 차이에 의한 영향 평가)

  • Han, Sang-Jun;Lee, Kyung-Jin;Lee, Seung-Jin;Kim, Hee-Gang;Park, Eung-Seop
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • When the calibration on Liquid Scintillation Counter using the Solid $^3H$ Standard Source of 200,000DPM is executed, the uncertainty due to activity and geometry difference, exists. Therefore, this paper intends to evaluate environmental samples comparatively accurately as decreasing this uncertainty existing in the process of calibration. For this, measurements on samples manufactured by $^3H$ Standard Source and sensitivity study were performed. Also, this paper verified calibration results using Radioactivity-Error-Analysis Method, and evaluated quantitatively the effect by geometry and activity difference based on verification result. According to the result of sensitivity study, in case of using the exposure time of 75 sec and Repeat method, the measuring accuracy and precision of about $1{\sim}3%$ were increased in comparison with the existing method. By analysis result, the effect by activity difference did not appear, and a plastic cell existing into Teflon vial made a role as reflector. The less the effect of plastic cells are decreased, the more activity is high, and the effect of those can be neglected at the activity of 200,000 DPM.