• Title/Summary/Keyword: Calibration Method

Search Result 2,835, Processing Time 0.028 seconds

Study on the calibration of a five-hole Pitot-tube for the wake measurement (반류 계측용 5공 피토관의 캘리브레이션 방법에 관한 연구)

  • Kim, W.J.;Kim, D.H.;Yoon, H.S.;Moon, D.Y.;Van, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.11-19
    • /
    • 1997
  • The new definition of calibration coefficients is proposed for a five-hole Pitot tube. Two-angle chart calibration other than one-angle variation is considered to improve the accuracy in the measurement of the three-dimensional velocity fields. Several sets of correlation coefficients are introduced for different shapes of the probe tip. The calibration method with one-angle variation is compared with the new two-angle chart calibration method and the improvement of the present method is clearly shown.

  • PDF

Accuracy Improvement of a 5-axis Hybrid Machine Tool (5축 혼합형 공작기계의 정밀도 향상 연구)

  • Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.84-92
    • /
    • 2014
  • In this paper, a novel 5-axis hybrid-kinematic machine tool is introduced and the research results on accuracy improvement of the prototype machine tool are presented. The 5-axis hybrid machine tool is made up of a 3-DOF parallel manipulator and a 2-DOF serial one connected in series. The machine tool maintains high ratio of stiffness to mass due to the parallel structure and high orientation capability due to the serial-type wrist. In order to acquire high accuracy, the methodology of measuring the output shafts by additional sensors instead of using encoder outputs at the motor shafts is proposed. In the kinematic view point, the hybrid manipulator reduces to a serial one, if the passive joints in the U-P serial chain at the center of the parallel manipulator are directly measured by additional sensors. Using the method of successive screw displacements, the kinematic error model is derived. Since a ball-bar is less expensive than a full position measurement device and sufficiently accurate for calibration, the kinematic calibration method of using a ball-bar is presented. The effectiveness of the calibration method has been verified through the simulations. Finally, the calibration experiment shows that the position accuracy of the prototype machine tool has been improved from 153 to $86{\mu}m$.

A Calibration and Uncertainty Analysis on the Load Monitoring System for a Low Speed Shaft and Rotor Blade of a Wind Turbine (풍력발전기 주축 및 날개 부하 측정시스템의 보정 및 불확실성 해석)

  • Park Moo-Yeol;Yoo Neung-Soo;Nam Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.560-567
    • /
    • 2006
  • The exact load measurements for the mechanical parts of a wind turbine are important step both fur the evaluation of a specific wind turbine design and for a certification process. A common method for a mechanical load measurement is using a strain gauge sensing. Two main problems ought to be answered in order for this method to be applied to the wind turbine project. These are strain gauge calibration and non-contact signal transmission from the strain gauge output to a load monitoring system. This paper suggests reliable solutions fer these two problems. A Bluetooth, a short range wireless data communication technology, is used to solve the second problem. The first one, the strain gauge calibration methodology for a load measurement in a wind turbine application, is fully explained in this paper. Various mechanical loadings for a strain gauge calibration in a wind turbine load measurement are introduced and analyzed. Initial experimental results which are obtained from a 1 kW small size wind turbine are analyzed, and the uncertainty problem in estimating mechanical loads using a calibration matrix is fully covered in this paper.

A Calibration of the fundamental Diagram on the Type of Expressway (고속도로 유형별 교통류 모형 정산)

  • Yoon, Jae-Yong;Lee, Eui-Eun;Kim, Hyunmyung;Han, Dong-Hee;Lee, Dong-Youn;Lee, Choong-Shik
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.119-126
    • /
    • 2014
  • PURPOSES: Used in transportation planning and traffic engineering, almost traffic simulation tools have input variable values optimized by overseas traffic flow attribution because they are almost developed in overseas country. Thus, model calibration appropriated for internal traffic flow attribution is needed to improve reliability of simulation method. METHODS : In this study, the traffic flow model calibration is based on expressways. For model calibration, it needs to define each expressway link according to attribution, thus it is classified by design speed, geometric conditions and number of lanes. And modified greenshield model is used as traffic flow model. RESULTS : The result of the traffic model calibration indicates that internal congested density is lower than overseas. And the result of analysis according to the link attribution indicates that the more design speed and number of lanes increase, the lower the minimum speed, the higher the congested density. CONCLUSIONS: In the traffic simulation tool developed in overseas, the traffic flow is different as design speed and number of lanes, but road segment don't affect traffic flow. Therefore, these results need to apply reasonably to internal traffic simulation method.

Calibration of a Rotating Stereo Line Camera System for Indoor Precise Mapping (실내 정밀 매핑을 위한 회전식 스테레오 라인 카메라 시스템의 캘리브레이션)

  • Oh, Sojung;Shin, Jinsoo;Kang, Jeongin;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.171-182
    • /
    • 2015
  • We propose a camera system to acquire indoor stereo omni-directional images and its calibration method. These images can be utilized for indoor precise mapping and sophisticated imagebased services. The proposed system is configured with a rotating stereo line camera system, providing stereo omni-directional images appropriate to stable stereoscopy and precise derivation of object point coordinates. Based on the projection model, we derive a mathematical model for the system calibration. After performing the system calibration, we can estimate object points with an accuracy of less than ${\pm}16cm$ in indoor space. The proposed system and calibration method will be applied to indoor precise 3D modeling.

In-Flight Calibration Method for Direction Finding of Communication Signals based on Aviation Systems (항공 시스템 기반의 통신신호 방향 탐지를 위한 비행 보정 기법)

  • Chang, Jaewon;Joo, Jeungmin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.290-299
    • /
    • 2019
  • Direction-finding equipment with multiple antennas are used to estimate the direction of a signal emitted by a source; they can be used to rescue a victim or locate a specified source. During direction finding, reflection waves are present and signal distortion is observed depending on the external shape and material of a system that incorporates the direction-finding equipment and multiple antennas. Therefore, to accurately estimate the azimuth of the signal source and develop the direction-finding equipment, a calibration should be performed to reflect the influence of the antenna arrangement(layout) and system contour. In this paper, we describe an in-flight calibration method to develop direction-finding equipment to locate communication signals using an aviation system, and we analyze the direction-finding performance when applying phase calibration data obtained through the in-flight calibration.

Receiving Channel Calibration of Multi-Channel Integrated Receiver for Monopulse Radar (모노펄스 레이다용 다채널 집적 수신기의 수신 채널 보정)

  • Jinsung Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.109-114
    • /
    • 2024
  • The effect of inter-channel coupling in multi-channel monopulse receiver is expected to increase by miniaturization trend of receiver. Therefore, in this paper, calibration method is proposed to compensation for inter-channel coupling in receiver of monopulse radar. And it can prevent distortion of angle information of target. Hardware configuration that consists of switch, directional coupler, matched load, ADC(Analog to Digital Converter), signal source of calibration is proposed to calibration. Total nine scattering parameters are obtained by controlling the switch and signal source of calibration. After that, method for restoring the undistorted signal is proposed using the mathematical relationship between the monopulse signal output from the antenna and the monopulse signal passing through the multi-channel receiver in the presence of inter-channel coupling.

On the Calibration of Health Monitoring System installed in the Railway Bridges (철도교 상시계측시스템용 검교정기 제작 및 실험)

  • 박준오;이준석;최일윤
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1053-1058
    • /
    • 2002
  • Calibration of the health monitoring system is considered in this study. For this, brief introduction on the realtime monitoring system, installed in some of the Korea Highspeed Railway bridges, is made and specifications of the calibrators are outlined. Calibration method is next explained for each sensor and detailed procedures are illustrated. Calibration results will be published elsewhere and modification of the gauge factors will also be investigated in detail.

  • PDF

Calibration of a Five-Hole Pressure Probe using a Single Sector Error Interpolation Model (단일영역 오차보간 모델을 이용한 5-Hole Pressure Probe의 교정)

  • O, Se-Yun;An, Seung-Gi;Jo, Cheol-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.30-38
    • /
    • 2006
  • A new calibration method for five-hole pressure probe is presented. This method provides accuracies better than those based on the traditional regression method. The calibration algorithm uses a single sector interpolation response surface calculated by comparing the regression curve fits with the actual calibration data. A five-hole pressure probe with hemispherical tip was fabricated and calibrated at Reynolds number of $4.11{\times}10^6$/m and flow angle of ${\pm}48$ degrees. Two data prediction models, the least-square regression and a single sector error interpolation, were evaluated. The comparison of these two calibration methods to a five-hole probe is described and discussed. An evaluation of the calibration accuracy is also given.

Novel Calibration Method of Noise Figure Analyzer and Measurement of Noise Correlation Matrix (잡음지수분석기의 새로운 교정방법과 잡음상관행렬 측정)

  • Lee, Dong-Hyun;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.491-499
    • /
    • 2018
  • The conventional calibration method for a noise figure analyzer is to use a noise source. This method is accompanied by a significant irregular ripple in the measurement results, because it does not consider the mismatch of the noise source and noise figure analyzer during calibration. A novel calibration method of the noise figure analyzer is proposed that considers the mismatch between the noise power and noise figure analyzer. A novel noise correlation matrix measurement technique using this method is also proposed. The method determines the noise correlation matrix and the gain of the uncorrected noise figure analyzer using uncorrected noise powers. Then, having determined the gain and noise correlation matrix, the effects of noise figure analyzers were corrected in the measurement results of the noise correlation matrix for the device under test (DUT). Through the proposed method, the measured noise parameters of a DUT showed the same degree of irregular ripples as the result of using the relative noise ratio.