그림 1. 전자파 무반향실(anechoic chamber) 시험 시설 Fig. 1. Electromagnetic anechoic chamber test facility.
그림 2. 항공 시스템 기반의 야외 시험 시설(BAE systems) Fig. 2. Outdoor test facility based on aviation systems(BAE systems).
그림 3. N개 수신안테나를 이용한 위상비교 방향 탐지 장치의 블록도 Fig. 3. Block diagram of correlative interferometer DF equipment using N receive antennas.
그림 4. 비행 보정을 위한 시스템 구성도 Fig. 4. System configuration for in-flight calibration.
그림 5. 비행 보정을 위한 순서도 Fig. 5. Flow chart for in-flight calibration.
그림 6. 비행 보정을 위한 항공기의 이동 경로 Fig. 6. Flight path of the aircraft for in-flight calibration.
그림 7. 비행 보정 수행 시 항공기의 자세정보(roll, pitch) 및 보정 신호의 항공기에서의 수신 레벨 Fig. 7. Aircraft attitude information(roll, pitch) and calibration signal reception level during in-flight calibration.
그림 8. 비행 보정을 통하여 수집된 50 MHz 주파수에 대한 위상차 패턴 (1번 vs. 2번 안테나) Fig. 8. Phase difference pattern at 50 MHz frequency collected through in-flight calibration.
그림 9. 비행 보정 데이터 생성을 위한 유효 범위의 항공기 자세 및 보정 신호 수신 레벨 필터링 Fig. 9. Aircraft attitude and calibration signal reception level filtering of the effective range for in-flight calibration data generation.
그림 10. 필터링된 50 MHz 주파수에 대한 위상차 패턴(1 번 vs. 2번 안테나) Fig. 10. Filtered phase difference pattern at 50 MHz frequency(Ant. 1 vs. Ant. 2).
그림 11. 50 MHz 주파수에 대한 방위각 별 위상 보정 데이터 비교(1번 vs. 2번 안테나 간 위상차) Fig. 11. Comparison of phase calibration data by azimuth angle at 50 MHz frequency(Phase difference between ant. 1 and ant. 2).
그림 12. 450 MHz 주파수에 대한 방위각 별 위상 보정 데이터 비교(1번 vs. 2번 안테나 간 위상차) Fig. 12. Comparison of phase calibration data by azimuth angle at 450 MHz frequency(Phase difference between ant. 1 and ant. 2).
그림 13. 항공기에 적용된 위상 보정 데이터 종류에 따른 방향 탐지 오차의 확률 분포(50 MHz) Fig. 13. Probability distribution of DF error according to phase calibration data type applied to aircraft(50 MHz).
그림 14. 항공기에 적용된 위상 보정 데이터 종류에 따른 방향 탐지 오차의 확률 분포(450 MHz) Fig. 14. Probability distribution of DF error according to phase calibration data type applied to aircraft(450 MHz).
표 1. 비행 보정을 통한 위상 보정 데이터 적용 시 방향 탐지 정확도 개선량 Table 1. Improved DF accuracy when applying phase calibration data through in-flight calibration.
References
- C. H. Cotter, Principles and Practice of Radio Direction Finding, London, Pitman, 1961.
- W. Read, "Review of conventional tactical radio direction finding systems," Defense Research Establishment Ottawa, DREO-TN-89-12, May 1989.
- P. J. D. Gething, Radio Direction Finding and Superresolution, London, The Institution of Engineering and Technology, 1991.
- J. L. Volakis, Antenna Engineering Handbook, New York, McGraw Hill Professional Pub., 2007.
- J. M. Won, "The performance analysis of burst error elimination CVDF algorithm using switching remote direction finding antenna in VHF," Journal of the Korea Institute of Military Science and Technology, vol. 10, no. 3, pp. 129-138, 2007.
- Y. T. Lo, S. W. Lee, Antenna Handbook: Theory, Applications, and Design, Boston, Springer, 2013.
- K. Ghaemi, R. Ma, and N. Behdad, "A small-aperture, ultrawideband HF/VHF direction-finding system for unmanned aerial vehicles," IEEE Transactions on Antennas and Propagation, vol. 66, no. 10, pp. 5109-5120, Oct. 2018. https://doi.org/10.1109/TAP.2018.2858210
- C. W. Earp, D. L. Copper-Jones, "The practical evolution of the commutated-aerial direction-finding system," in Proceedings of the IEE-Part B: Radio and Electronic Engineering, Mar. 1958, vol. 105, no. 9, pp. 317-332.
- S. E. Lipsky, Microwave Passive Direction Finding, Raleigh, NC, Scitech Publishing, 2004.
- E. Jacobs, E. W. Ralston, "Ambiguity resolution in interferometry," IEEE Transactions on Aerospace and Electronic System, vol. AES-17, no. 6, pp. 766-780, Nov. 1981. https://doi.org/10.1109/TAES.1981.309127
- H. H. Jenkins, Small-Aperture Radio Direction-Finding, Boston, Artech House, 1991.
- B. C. Ng, C. M. S. See, "Sensor-array calibration using a maximum-likelihood approach," IEEE Transactions on Antennas and Propagation, vol. 44, no. 6, pp. 827-835, Jun. 1996. https://doi.org/10.1109/8.509886
- A. J. Weiss, B. Friedlander, "Eigenstructure methods for direction finding with sensor gain and phase uncertainties," Circuit Systems and Signal Processing, vol. 9, no. 3, pp. 271-300, 1990. https://doi.org/10.1007/BF01201215
- J. Kim, H. J. Yang, B. W. Jung, and J. Chun, "Blind calibration for a linear array with gain and phase error using independent component analysis," IEEE Antennas Wireless Propagation Letters, vol. 9, pp. 1259-1262, 2010. https://doi.org/10.1109/LAWP.2010.2104132
- J. Pierre, M. Kaveh, "Experimental performance of calibration and direction-finding algorithms," in ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing, Toronto, ON, 1991, vol. 2, pp. 1365-1368.
- S. Hu, G. Hong, and W. Jian, "Antenna calibration and digital beam forming technique of the digital array radar," in 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013), KunMing, 2013, pp. 1-5.
- S. Germishuizen, D. C. Baker, "Practical accuracy limitations in airborne microwave interferometric direction finding," in Proceedings of IEEE. AFRICON'96, Sep. 1996, vol. 1, pp. 266-271.
- J. P. Lie, T. Blu, and C. M. Samson, "Single antenna power measurements based direction finding," IEEE Transactions on Signal Processing, vol. 58. no. 11, pp. 5682-5692, Nov. 2010. https://doi.org/10.1109/TSP.2010.2065227
- Test Procedure for Measuring Direction Finder Sensitivity in the VHF/UHF Fraequency Range, ITU-R SM.2096-0, 2016.
- J. H. Lee, J. M. Joo, K. Kim, J. H. Lee, and Y. J. Park, "Practical consideration factors to design array configuration of direction finding system for airborne signal intelligence," Security and Communication Networks, p. 9185760, 2018.
- D. C. Schleher, Electronic Warfare in the Information Age, Norwood, Artech House, 1999.
- L. Dinoi, A. D. Vito, and G. Lubello, "Direction finding of ground based emitters from airborne platforms," in 2008 IEEE Radar Conference, Rome, pp. 1-6, 2008.