• Title/Summary/Keyword: Calcium hydroxide($Ca(OH)_2$)

Search Result 131, Processing Time 0.036 seconds

A Study on Synthesis of Ca and Mg Compounds from Dolomite with Salt Additional React (MgCl2·6H2O) (염 첨가 반응(MgCl2·6H2O)을 이용하여 백운석으로부터 Ca 화합물과 Mg 화합물 합성에 관한 연구)

  • Hwang, Dae Ju;Yu, Young Hwan;Cho, Kye Hong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.399-409
    • /
    • 2021
  • In order to utilize dolomite as a calcium/magnesium compound material, it was prepared highly reactive calcined dolomite(CaO·MgO) using a microwave kiln (950 ℃, 60 min). The experiment was performed according to the standard of the hydration test (ASTM C 110) and hydration reactivity was analyzed as medium reactivity (max 74.1 ℃, 5 min). Experiments were performed with calcined dolomite and salt (MgCl2·6H2O) (a) 1:1, (b) 1:1.5, and (c) 1:2 wt% based on the hydration reaction of calcined dolomite. The result of X-ray diffraction analysis confirmed that MgO of calcined dolomite increased to Mg(OH)2 as the salt addition ratio increased. After the separating reaction, calcium was stirred at 80 ℃, 24 hr that produced CaCl2 of white crystal. XRD results, it was confirmed calcium chloride hydrate (CaCl2·(H2O)x) and CaO of calcined dolomite and salt additional reaction was separated into CaCl2. And it was synthesized with Ca(OH)2 99 wt% by NaOH adding reaction to the CaCl2 solution, and the synthesized Ca(OH)2 was manufactured CaO through the heat treatment process. In order to prepare calcium carbonate, CaCO3 was synthesized by adding Na2CO3 to CaCl2 solution, and the shape was analyzed in cubic form with a purity of 99 wt%.

Determination of Hydroxyapatite Precipitation Condition from the $Ca-PO_4-H_2O$ System ($Ca-PO_4-H_2O$계로부터 수산화아파타이트의 침전조건 결정)

  • Oh, Young-Jei
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.208-214
    • /
    • 2000
  • The formation and dissolution of hydroxides, carbonates and hydroxyapatite (HAp), which depend on the pH of solution, are important factor for the preparation of homogeneous and fine HAp, $Ca_{10-x}(HPO_4)_x(PO_4)_{6-x}(OH)_{2-x}(x=0)$, ceramic powder from the $Ca-PO_4-H_2O$ system. Since the solubility of each complex ion is a linear function of pH, the solubility diagram can be obtained by plotting the logarithmic molar concentrations calculated from the values of the equilibrium constants and solubility products for hydroxides, carbonates, and hydroxyapatite. The optimum pH condition for the formation of single phase $Ca_{10-x}(HPO_4)_x(PO_4)_{6-x}(OH)_{2-x}(x=0)$ powder in $Ca-PO_4-H_2O$ system at $25^{\circ}C$ was estimated as $10.5{\pm}0.5$ through the theoretical consideration. The HAp powder dried at $80^{\circ}C$ showed a fine agglomerated particles with a size of 75 nm. The HAp powder calcined at $1,000^{\circ}C$ consisted of nearly homogeneous particles with a size of 450 nm. Even though the dried HAp particles consisted of agglomeration, mechanical properties were superior due to fine microstructure after sintering.

  • PDF

Liming Materials and Desalinization of Marine Originated Tidal Soil (석회(石灰)의 종류(種類)와 해성간척지(海成干拓地) 토양(土壤)의 제염(除鹽))

  • Oh, Wang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.107-113
    • /
    • 1990
  • In comparision with calcium sulphate, the effect of calcium-carbonate, -silicate and -hydroxide on desalinization of tidal saline soil was investigated in a continuous leaching column experiments after mixing with an equivalent amount of Ca to sodium plus magnessium in the saline soil. One half of liming materials was mixed to the top one-tenth of column soil and the remainder was spread on the surface. Results obtained are as follows ; 1. Gypsum made easy to percolate and desaline (Na) tidal marine soil but accumulated magnessium in subsoil. 2. $Ca(OH)_2$, $CaCO_3$, and $CaSO_3$ precipitated Mg in the soil which limes were mixed, but they washed down magnessium more severely from the immediate bellow the limed soil and less from the subsequent soil layers. This leaching was more severer at the treatment of $Ca(OH)_2$and lowest at the treatment of $CaSiO_3$. 3. The alkalinity of lime in addition to the dissociation of exchangeable Na raised pH of limed leached tidal soil and slowed down the percolation rate which retarded desalining Na from limed saline soils. This effect was most severe in the $Ca(OH)_2$ treated soil. 4. pH of leached soils was correlated possitively with exchangeable Na and negatively with exchangeable Mg giving follwing relationship pH= 7.77+0.489 Na/Mg r = 0.845.

  • PDF

The Strength Properties Activated Granulated Ground Blast Furnace Slag with Aluminum Potassium Sulfate and Sodium Hydroxide (칼륨명반과 수산화나트륨으로 활성화된 고로슬래그 미분말의 강도 특성)

  • Kim, Taw-Wan;Hahm, Hyung-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.95-102
    • /
    • 2015
  • In this paper, the effects of sodium hydroxide (NaOH) and aluminum potassium sulfate ($AlK(SO_4)_2{\cdot}12H_2O$) dosage on strength properties were investigated. For evaluating the property related to the dosage of alkali activator, sodium hydroxide (NaOH) of 4% (N1 series) and 8% (N2 series) was added to 1~5% (K1~K5) dosage of aluminum potassium sulfate ($AlK(SO_4)_2{\cdot}12H_2O$) and 1% (C1) and 2% (C2) dosage of calcium oxide (CaO). W/B ratio was 0.5 and binder/ fine aggregate ratio was 0.5, respectively. Test result clearly showed that the compressive strength development of alkali-activated slag cement (AASC) mortars were significantly dependent on the dosage of NaOH and $AlK(SO_4)_2{\cdot}12H_2O$. The result of XRD analysis indicated that the main hydration product of $NaOH+AlK (SO_4)_2{\cdot}12H_2O$ activated slag was ettringite and CSH. But at early ages, ettringite and sulfate coated the surface of unhydrated slag grains and inhibited the hydration reaction of slag in high dosage of $NaOH+AlK(SO_4)_2{\cdot}12H_2O$. The $SO_4{^{-2}}$ ions from $AlK(SO_4)_2{\cdot}12H_2O$ reacts with CaO in blast furnace slag or added CaO to form gypsum ($CaSO_4{\cdot}2H_2O$), which reacts with CaO and $Al_2O_3$ to from ettringite in $NaOH+AlK(SO_4)_2{\cdot}12H_2O$ activated slag cement system. Therefore, blast furnace slag can be activated by $NaOH+AlK(SO_4)_2{\cdot}12H_2O$.

A study of decomposition of sulfur oxides using Calcium hydroxide catalyst by plasma reactions (Ca(OH)2촉매를 이용한 플라즈마 반응에 의한 황산화물의 제거에 관한 연구)

  • Kim, Da Young;Woo, In Sung;Lee, Sun Hee;Kim, Do Hyeon;Kim, Byeong Cheol
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.11a
    • /
    • pp.547-560
    • /
    • 2013
  • In this study, the air pollutant removal such as sulfur oxides was studied. A combination of the plasma discharge in the reactor by the reaction surface discharge reactor Calcium hydroxides catalytic reactor and air pollutants, hazardous gas SOx, changes in gas concentration, change in frequency, the thickness of the electrode, kinds of electrodes and the addition of simulated composite catalyst composed of a variety of gases, including decomposition experiments were performed by varying the process parameters. The experimental results showed the removal efficiency of 98% in the decomposition of sulfur oxides removal experiment when Calcium hydroxides catalysts and the tungsten(W) electrodes were used. It was increased 3% more than if you do not have the catalytic. If added to methane gas was added the removal efficiency increased decomposition.

  • PDF

Species of therapy-resistant flora from infected root canals: their survival and resistant mechanisms to $Ca(OH)_2$

  • Lee, Woo-Cheol
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.607-607
    • /
    • 2003
  • The purpose of this presentation is to investigate whether the certain therapy resistant bacteria can impair the immune defense system in the pariapical tissue. Recent studies have reported that the facultative or obligatory anaerobic bacteria such as Fusobacterium nucleatum, Enterococcus faecalis and Actinomyces species and Gram positive facultative bacteria Enterococcus faecalis have been shown to dominate in persistent periapical lesion and usually recovered from failed root canal treated cases. Moreover, E. faecalis has been reported to withstand the antimicrobial agent and endure potential starvation and resist the antibacterial effect of calcium hydroxide intracanal medication.(omitted)

  • PDF

Treatment of Hydrogen Fluoride Generated from the F-gases Decomposition Processes

  • Park, Jun-Hyeong;Choi, Chang Yong;Kim, Tae-Hun;Shin, InHwan;Son, Youn-Suk
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.190-196
    • /
    • 2016
  • The objective of this study is to obtain the optimal conditions to remove hydrogen fluoride (HF) generated from a variety of F-gas treatment processes. First, we selected $Ca(OH)_2$ and $CaCO_3$ as a reactant among the various alkali salts which have a high removal efficiency and a competitive price by forming a calcium fluoride precipitate. Additionally, various factors were investigated to improve the removal efficiency of HF. The conditions such as the settling time, agitating time and intensity, reaction temperature, and pH were considered as main factors. As a result, in the treatment process to remove HF through Ca-based alkali salts, the optimal conditions were a 120 min settling time, 30 min of agitation at 100 rpm, a pH of 4-8, and a reaction temperature of $40^{\circ}C$.

Corrosion Control in Water Pipes by Adjusting the Corrosivity of Drinking Water : Effect and impact of the Corrosion Inhibitor (수돗물 부식성 제어를 통한 수도관 부식방지 : 부식억제제별 효과와 영향에 대한 분석)

  • Park, Young-Bog;Park, Ju-Hyun;Park, Eun-Hee;Lee, Jin-Suk;Kim, Hyen-Ton;Choi, Young-June;Chung, Hyen-Mi;Huh, Yu-jeong;Choi, In-cheol
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.303-310
    • /
    • 2016
  • The tap water used in Seoul was found to be corrosive. Its corrosivity was effectively reduced by that the additions of alkali agent such as NaOH, $Ca(OH)_2$ and corrosion inhibitor such as $H_3PO_4$. For the corrosion test, carbon steel pipe 50 m long was exposed to the drinking water produced by a pilot plant at $36.5^{\circ}C$, similar to the existing process where it takes about 20 minutes to reduce the initial chlorine content of 0.5 mg/L to 0.05 mg/L. $CO_2$ and $Ca(OH)_2$ was added not only to control the Langelier index (LI) above -1.0 and but also, to increase the duration time of residual chlorine by about 6 times. The persistence effect of residual chlorine was in the order of $H_3PO_4$ > $Ca(OH)_2$ > NaOH. Measurements of weight loss showed that corrosion inhibition was effective in order of $Ca(OH)_2$ > $H_3PO_4$ > NaOH > no addition, where the concentrations of $Ca(OH)_2$ and phosphate were 5 ~ 10 mg/L (as $Ca^{2+}$) and 1 mg/L (as $PO{_4}^{3-}$), respectively.

Properties Analysis of Environment Friendly Coating Films Formed by Using Electrodeposition Principle on Seawater (해수환경중 전착원리에 의해 형성시킨 환경친화적인 코팅막의 특성 분석)

  • Baek, S.M.;Lee, C.S.;Kim, K.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.196-197
    • /
    • 2005
  • Cathodic protection is one of the successful ways to prevent corrosion of steel structures in marine environments. The unique feature of cathodic protection in seawater is the formation of calcareous deposits on cathodic metal surface. The formation principles of calcareous deposit seawater had been known for a long time. That is, cathodic reduction reactions associated with cathodic protection in seawater generate $OH^-$ at the metal surface in accordance with the formular ; 1/2 $O_2$ + $H_2O$ + $2e^-$ $2OH^-$ and $2H_2O$ + $2e^-$ ${\rightarrow}$ $H_2$ + $2OH^-$. These reactions increase the pH at the metal / seawater interface. The high pH causes precipitation of $Mg(OH)_2$ and $CaCO_3$ in accordance with the formular ; $Mg^{2+}$ + $2(OH)^-$ ${\rightarrow}$ $Mg(OH)_2$ and $Ca^{2+}$ + $HCO_3^-$ + $OH^-$ ${\rightarrow}$ $H_2O$ + $CaCO_3$. These are typically the main compounds in calcareous deposits. It obviously has several advantages compared to the conventional coatings, since the environment-friendly calcareous deposit coating is formed by the elements($Mg^{2+}$, $Ca^{2+}$) naturally present in seawater. In this study, environmental friendly calcareous deposit films were prepared on steel plates by electro plating technic in natural seawater. The influence of current density on composition ratio, structure and morphology of the coated films were investigated by scanning electron microscopy formation process of calcareous deposits films in natural seawater. And we confirmed the properties of all the films can be improved greatly by controlling the material structure and morphology with effective use of the electroplating method in natural seawater.

  • PDF

Effect of intracanal medicaments used in endodontic regeneration procedures on microhardness and chemical structure of dentin

  • Yassen, Ghaeth Hamdon;Eckert, George Joseph;Platt, Jeffrey Allen
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.2
    • /
    • pp.104-112
    • /
    • 2015
  • Objectives: This study was performed to investigate the effects of different intracanal medicaments on chemical structure and microhardness of dentin. Materials and Methods: Fifty human dentin discs were obtained from intact third molars and randomly assigned into two control groups and three treatment groups. The first control group received no treatment. The second control group (no medicament group) was irrigated with sodium hypochlorite (NaOCl), stored in humid environment for four weeks and then irrigated with ethylenediaminetetraacetic acid (EDTA). The three treatment groups were irrigated with NaOCl, treated for four weeks with either 1 g/mL triple antibiotic paste (TAP), 1 mg/mL methylcellulose-based triple antibiotic paste (DTAP), or calcium hydroxide [$Ca(OH)_2$] and finally irrigated with EDTA. After treatment, one half of each dentin disc was subjected to Vickers microhardness (n = 10 per group) and the other half was used to evaluate the chemical structure (phosphate/amide I ratio) of treated dentin utilizing attenuated total reflection Fourier transform infrared spectroscopy (n = 5 per group). One-way ANOVA followed by Fisher's least significant difference were used for statistical analyses. Results: Dentin discs treated with different intracanal medicaments and those treated with NaOCl + EDTA showed significant reduction in microhardness (p < 0.0001) and phosphate/amide I ratio (p < 0.05) compared to no treatment control dentin. Furthermore, dentin discs treated with TAP had significantly lower microhardness (p < 0.0001) and phosphate/amide I ratio (p < 0.0001) compared to all other groups. Conclusions: The use of DTAP or $Ca(OH)_2$ medicaments during endodontic regeneration may cause significantly less microhardness reduction and superficial demineralization of dentin compared to the use of TAP.