• Title/Summary/Keyword: Calcium hydroxide($Ca(OH)_2$)

Search Result 131, Processing Time 0.023 seconds

A study of decomposition of sulfur oxides(harmful gas) using calcium dihydroxide catalyst by plasma reactions (Ca(OH)2촉매를 이용한 플라즈마 반응에 의한 황산화물(유해가스)의 제거에 관한 연구)

  • Kim, Dayoung;Hwang, Myungwhan;Woo, Insung
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.237-246
    • /
    • 2014
  • Researches on the elimination of sulfur and nitrogen oxides with catalysts and absorbents reported many problems related with elimination efficiency and complex devices. In this study, decomposition efficiency of harmful gases was investigated. It was found that the efficiency rate can be increased by moving the harmful gases together with SPCP reactor and the catalysis reactor. Calcium hydroxide($Ca(OH)_2$), CaO, and $TiO_2$ were used as catalysts. Harmful air polluting gases such as $SO_2$ were measured for the analysis of decomposition efficiency, power consumption, and voltage according to changes to the process variables including frequency, concentration, electrode material, thickness of electrode, number of electrode winding, and additives to obtain optimal process conditions and the highest decomposition efficiency. The standard sample was sulfur oxide($SO_2$). Harmful gases were eliminated by moving them through the plasma generated in the SPCP reactor and the $Ca(OH)_2$ catalysis reactor. The elimination rate and products were analyzed with the gas analyzer (Ecom-AC,Germany), FT-IR(Nicolet, Magna-IR560), and GC-(Shimazu). The results of the experiment conducted to decompose and eliminate the harmful gas $SO_2$ with the $Ca(OH)_2$ catalysis reactor and SPCP reactor show 96% decomposition efficiency at the frequency of 10 kHz. The conductivity of the standard gas increased at the frequencies higher than 20 kHz. There was a partial flow of current along the surface. As a result, the decomposition efficiency decreased. The decomposition efficiency of harmful gas $SO_2$ by the $Ca(OH)_2$ catalysis reactor and SPCP reactor was 96.0% under 300 ppm concentration, 10 kHz frequency, and decomposition power of 20 W. It was 4% higher than the application of the SPCP reactor alone. The highest decomposition efficiency, 98.0% was achieved at the concentration of 100 ppm.

Effect of Early Compressive Strength Development with Blast Furnace Slag Using Various stimulants Mortar. (각종자극제가 고로슬래그 미분말 혼입 모르타르의 초기재령 압축강도 발현에 미치는 영향)

  • kim, Jin-Hyoung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.57-58
    • /
    • 2011
  • In the experiment, we add to NaOH, Ca(OH)2 and Calcium Hydroxide as the Slag stimulus also mixed the cement stimulus such as NaSCN, TEA and CaCl2 for improving compressive strenth of concrete which added the Blast Furnace Slag Powder at 1 and 3 days. In the result of strength test, It showed that 2percentage of activator 1 and 5percentage Ca(OH)2, 1percentage of activator 3 and 5percentage of Ca(OH)2 are higher than 100 percentage OPC.

  • PDF

EFFECT OF CALCIUM HYDROXIDE ON BOND STRENGTH OF DENTIN BONDING SYSTEMS (수산화칼슘 적용에 따른 상아질 접착제의 접착강도 변화에 관한 연구)

  • Park, No-Hoon;Park, Sang-Hyuk;Choi, Gi-Woon;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.198-207
    • /
    • 2007
  • The purpose of this study was to investigate the effect of calcium hydroxide on dentin bonding strength of various dentin bonding systems as a function of time in composite resin restoration. Dentin adhesives used in this study were Scotchbond Multipurpose, Single Bond, SE Bond and Prompt L-Pop. Flat dentin surfaces adjacent to pulp chamber were created, then $Ca(OH)_2$ and saline were mixed and applied on dentin surface of experimental group, then IRM was used to cover the mixture on dentin surface and the specimens were stored at $36.5^{\circ}C$ for experiment period (7 days, 30 days). After removing IRM and $Ca(OH)_2$, each dentin adhesives were treated on dentin surfaces. Composite resin (Z-250, 3M) was placed with S mm height and was light-cured for 20 seconds. After stored in distilled water for 24 hours, each dentin-composite bonded spicemen was embedded in epoxy resin and sectioned into $1.0\times1.0mm^2$ cross section composite-dentin beams. Specimen was mounted on zig of Universal testing machine and ${\mu}TBS$ test was performed. SEM analysis was performed to examine the fractured surfaces. The results suggested that applying calcium hydroxide did not show significant difference in dentin bonding strength.

The Strength Properties of Alkali-Activated Slag Mortars by Combined Caustic Alkali with Sodium Carbonate as Activator (가성알칼리와 탄산나트륨을 혼합한 활성화제를 사용한 알칼리 활성화 고로슬래그 모르타르의 강도 특성)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.745-752
    • /
    • 2012
  • This paper studies the effect of the compressive strength for combined alkali-activated slag mortars. The effect of activators such as alkali type and dosage factor on the strength was investigated. The alkalis combinations made using five caustic alkalis (sodium hydroxide (NaOH, A series), calcium hydroxide ($Ca(OH)_2$, B series), magnesium hydroxide ($Mg(OH)_2$, C series), aluminum hydroxide ($Al(OH)_3$, D series), and potassium hydroxide (KOH, E series)) with sodium carbonate ($Na_2CO_3$) were evaluated. The mixtures were combined in different dosage at 1M, 2M, and 3M. The study results showed that the compressive strength of combined alkali-activated slag mortars tended to increase with increasing sodium carbonate. The strength of combined alkali-activated slag mortars was better than that of control cases (without sodium carbonate). The result from scanning electron microscopy (SEM) analysis confirmed that there were reaction products of calcium silicate hydrate (C-S-H) and alumina-silicate gels from combined alkali-activated slag specimens.

Formation and Crystallization of Amorphous Calcium Carbonate in $Ca(OH)_2-H_2O-CO_2$ system ($Ca(OH)_2-H_2O-CO_2$계에서의 비정질 탄산칼슘 생서 및 결정화 연구)

  • 안지환;박찬훈
    • Resources Recycling
    • /
    • v.5 no.1
    • /
    • pp.42-49
    • /
    • 1996
  • The synthesis or amorphous calc~um carbonale in the reacllons oi cslcn~m hydroxide suspension - CO1 systcni !\.;is studied by uslng rneasulemel~ts of eleclrical conductivity, x-ray diftractorneter and t~ansmission eleclron microscope. The m~tial product of reactious was noncrystalline shape oI amorphous calcium carbo~iale confirmed by x-ray diffraction analyses. The amorphous calcium carbonate covered lhc surlace of calcium hydroxldc grains. Tlic electrical conductivity of suspension dec~eascd dramatically when the amorphous calcium carhonate was synlliesizcd. A portion or the amorplious calcmm carbonale clia~iged ilito [he chain calcite as an intermcdrate product. Thc continuo~~cso nrluctivity measurements of suspension were ahle to delennine the starting point of the synthesis and the mechallism of carbonation process

  • PDF

Cause of Surface voids in Concrete Attached to an Aluminum Form, and Measures for Prevention

  • Noh, Sang-Kyun;Lee, Seung-Hoon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.457-464
    • /
    • 2013
  • Traditionally, the material used for the form in reinforced concrete construction has been wood or steel. But recently, aluminum forms have been widely used in wall structures such as apartment buildings. Aluminum is light, easy to handle, and economically advantageous, but the hydrogen gas created due to its reaction with the alkali component in concrete gives rise to air pockets on the concrete's surface, and deteriorates the surface's finishability. In this research, to determine the influence of aluminum material on concrete, the cement paste W/C and its chemical reactivity in alkali and acid solution were analyzed. As a prevention plan, the influence of the number of applications of calcium hydroxide and various surface coating materials was analyzed. Through the analysis, it was found that the surface voids on the aluminum form are the result of the reaction of hydrogen gas with an alkali such as $Ca(OH)_2$. This can be prevented by the surface treatment of $Ca(OH)_2$, separating material and coating material. However, poor surface form and damages to the form are expected to cause quality degradation because of the aluminum-concrete interaction. Therefore, thorough surface treatment, rather than the type of separating material or coating material, is considered the most important target of management.

A Study on the Compressive Strength Property of Mortar with Fly Ash Using Water Eluted from Recycled Coarse Aggregates (용출수를 사용한 플라이애쉬 혼입 모르타르의 강도특성에 관한 연구)

  • Shin, Sang-Yeop;Jeong, Euy-Chang;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.31-32
    • /
    • 2013
  • ThThe purpose of this study is to investigate the compressive strength properties of fly ash using water eluted from recycled coarse aggregate. When fly ash come into contact with water, they have not a autonomously chemical reaction. But fly ash is a pozzolan reaction when fly ash come into contact with water and calcium hydroxide(Ca(OH)2) in alkaline environment. For that reason, if water eluted from recycled coarse aggregate use mixture water, fly ash is expected to reaction of pozzolan reaction property in early stage. According to the experimentation result, ICP-MS analysis showed water eluted from recycled coarse aggregate has a high alkali-ash value of pH of 12 and over. And mixing ratio 30% fly ash mortar using water eluted from recycled coarse aggregate showed a similar strength of plain mortar due to the pozzolan reaction. Also, poor strength in initial age, disadvantage of mortar using fly ash, can be improved as hydration in early age is expedited due to calcium hydroxide(Ca(OH)2) and unhydrated cement component eluted from recycled aggregate mortar.

  • PDF

Removal of Fluoride Ions from Electronic Industrial Wastewater Using Lime Stone Slurry (초미분말 석회석 현탁액을 이용한 전자산업 폐수 불소이온 제거연구)

  • Park, Hyeon Soo;Park, Yeon Soo;Jung, Goo Ill;Kim, Jae Woo;Jo, Young Min
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.258-263
    • /
    • 2018
  • This study attempted to utilize ultrafine precipitated calcium carbonate for fluoride removal from the wastewater of electronics industries. An average particle size of the calcium carbonate was $0.96{\mu}m$, and pH of the aqueous slurry was 10 with 70% in mass. The suspension solution showed approximately 2 mL/hr of the sedimentation rate. The present calcium carbonate solution could be comparable to the conventional aqueous calcium source, $Ca(OH)_2$, for the neutralization and removal of fluoride ions. Depending on the amount of an additional alkali source, less amounts of test Ca-source slurries were required to reach the solution pH of 7.0 than that of using the aqueous calcium hydroxide. It was also found from XRD analysis that more calcium fluoride precipitates were formed by the addition of calcium carbonate solution rather than that of calcium hydroxide. In addition, Minteq equilibrium modelling estimated various ion complexes of fluoride and calcium in this process.

A Study on the Characteristics of Calcium Ion Separation by Adding Acidic/Basic Reagents (산/염기성 물질 주입에 따른 칼슘이온 분리 특성 연구)

  • Lee, Ye Hwan;Kim, Jeongeun;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.103-107
    • /
    • 2020
  • The purpose of this study is to resource calcium ions contained in most industrial by-products, and confirm the characteristics of calcium ions by extraction and separation conditions. Calcium oxide was used as a calcium extraction source, and hydrochloric acid as an extraction solvent, and the extraction amount according to the concentration of the extraction solvent and the pH dependent characteristics of the extract were analyzed. As the extractant concentration increased, the extracted amount increased while the pH for the extraction was kept constant. In order to separate extracted calcium ions, an acid-basic solution was injected and the formation of precipitates and also the form of precipitates were analyzed. When the sulfuric acid and sodium hydroxide solution of acid and basic substances were injected into the calcium extract, precipitates were formed and separated into CaSO4 and Ca(OH)2 forms.

Hydration properties of OPC with Synthesized Calcium Alumino Ferrite(CAF) (합성 Calcium Alumino Ferrite(CAF) 치환량에 따른 시멘트 수화 특성)

  • Woong-Geol Lee;Myong-Shin Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2023
  • The cement is a typical CO2 emission industry. Manufacturing process improvements and increased use of alternative materials are needed to reduce energy consumption and CO2 emissions. This study confirmed the basic characteristics of cement hydration by sintering CAF at low temperature as a CO2 adsorbent material. For the hydration product of the synthetic CAF, crystal phase analysis, porosity, and structural images were confirmed, and the compressive strength was measured. The replacement rate of SCAF was 10, 20, and 100 %, and the compressive strength tended to decrease as the replacement rate increased. In addition, when the SCAF substitution rate is 100 %, the hydration products of the early age are calcium aluminum oxide hydrate (Ca3Al2O6 x H2O) and calcium iron hydroxide (Ca3Fe(OH)12), and at substitution rates of 10 and 20 %, CAF compounds other than general cement hydrates brownmillerite was observed. As for the porosity, the pore size increased and the porosity increased with the increase of the replacement ratio. As a result of this study, CAF manufactured by low-temperature sintering seems to be difficult to use alone and general curing for utilization as a CO2 adsorbing material.