DOI QR코드

DOI QR Code

A Study on the Characteristics of Calcium Ion Separation by Adding Acidic/Basic Reagents

산/염기성 물질 주입에 따른 칼슘이온 분리 특성 연구

  • Lee, Ye Hwan (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Kim, Jeongeun (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 이예환 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김정은 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2020.01.03
  • Accepted : 2020.01.27
  • Published : 2020.02.10

Abstract

The purpose of this study is to resource calcium ions contained in most industrial by-products, and confirm the characteristics of calcium ions by extraction and separation conditions. Calcium oxide was used as a calcium extraction source, and hydrochloric acid as an extraction solvent, and the extraction amount according to the concentration of the extraction solvent and the pH dependent characteristics of the extract were analyzed. As the extractant concentration increased, the extracted amount increased while the pH for the extraction was kept constant. In order to separate extracted calcium ions, an acid-basic solution was injected and the formation of precipitates and also the form of precipitates were analyzed. When the sulfuric acid and sodium hydroxide solution of acid and basic substances were injected into the calcium extract, precipitates were formed and separated into CaSO4 and Ca(OH)2 forms.

본 연구는 대부분의 산업부산물에 다량 포함되어 있는 칼슘이온을 자원화하기 위한 것으로 칼슘이온의 추출 및 분리 조건 별 특성을 확인하였다. 칼슘 추출원으로 산화칼슘, 추출용제로 염산을 사용했으며, 추출용제의 농도에 따른 추출량 및 추출액의 pH 변화 특성을 분석하였다. 추출용제의 농도가 높아짐에 따라 추출량은 증가하는 반면 추출액의 pH는 일정하게 유지되는 경향을 나타내었다. 추출된 칼슘이온을 분리하기 위하여 산·염기성 용액 주입하였으며, 침전물 발생 여부와 침전물의 형태에 대하여 분석하였다. 산·염기성 물질 중 황산, 수산화나트륨 용액을 칼슘추출액에 주입하였을 때 침전물이 발생하였으며 각각 CaSO4, Ca(OH)2 형태로 분리되는 것을 확인할 수 있었다.

Keywords

References

  1. M. Han, Evaluation of the compressive strength of the concrete incorporating the cement kiln dust based on maturity, J. Archit. Inst. Korea Struct. Construct., 23(7), 87-94 (2007).
  2. W. Hong, Y. Park, and M. Choi, The study of comparison and analysis for the kinds of construction wastes and the ways of disposal of these wastes generated when founding and dismantling residential buildings, J. Archit. Inst. Korea Plan. Des., 20(2), 201-208 (2004).
  3. E. Moon, S. J. Kim, H. G. Park, and Y. C. Choi, A study on the cementitious materials as carbon capture materials-micro-structure change by carbonation curing, J. Korea Inst. Struct. Maint. Insp., 22(6), 123-129 (2018). https://doi.org/10.11112/JKSMI.2018.22.6.123
  4. K. Yoo, Carbonation technology for waste treatment, KIC News, 18(3), 20-27 (2015).
  5. J. S. Sim, K. G. Lee, Y. T. Kim, and S. K. Kang, Hydration characteristics of coal-fly ash containing high CaO compound, J. Korean Ceram. Soc., 49(2), 185-190 (2012). https://doi.org/10.4191/kcers.2012.49.2.185
  6. C. Han, S. Kim, Y. Hwang, and C. Cha, Physical properties of cement kiln dust (CKD) and engineering properties of cement mortar incorporating CKD, J. Archit. Inst. Korea Struct. Construct., 20(11), 83-90 (2004).
  7. Y. Yoo, H. Choi, J. Bang, S. Chae, J. Kim, J. Kim, and S. Lee, $CO_2$ sequestration and utilization of calcium-extracted slag using air-cooled blast furnace slag and convert slag, Appl. Chem. Eng., 28(1), 101-111 (2017). https://doi.org/10.14478/ace.2016.1118
  8. M. Lee, Y. Jeoung, B. Ryu, and D. Jung, Development of the mulching landscape material on thermal response using mixture of ash, sludge and food waste, J. Korean Soc. Environ. Technol., 18(3), 267-273 (2017).
  9. C. G. Kim, H. G. Shin, and S. W. Kim, Feasibility of powdered MSWI ash melted slag as a seed crystal of crystallization reaction for the removal of phosphorus from sewage, J. Korea Org. Resour. Recycl. Assoc., 21(1), 69-75 (2013). https://doi.org/10.17137/KORRAE.2013.21.1.69
  10. B. Lee, Y. Jang, and Y. Kim, Engineering performance and applicability of environmental friendly porous concrete for a marine ranch using steel industry by-products, J. Korea Concr. Inst., 25(1), 115-123 (2013). https://doi.org/10.4334/JKCI.2013.25.1.115
  11. M. Son, G. Kim, K. Han, M. W. Lee, and J. T. Lim, Development status and research direction in the mineral carbonation technology using steel slag, Korean Chem. Eng. Res., 55(2), 141-155 (2017). https://doi.org/10.9713/kcer.2017.55.2.141
  12. D. Kim and M. Kim, Mineral carbonation using industrial waste, J. Korea Soc. Waste Manag., 32(4), 317-328 (2015). https://doi.org/10.9786/kswm.2015.32.4.317
  13. K. D. Crom, Y. W. Chiang, T. V. Gerven, and R. M. Santos, Purification of slag-derived leachate and selective carbonation for high-quality precipitated calcium carbonate synthesis, Chem. Eng. Res. Des., 104, 180-190 (2015). https://doi.org/10.1016/j.cherd.2015.07.029
  14. Y. H. Lee, S. H. Lee, I. H. Hwang, S. Y. Choi, S. M. Lee, and S. S. Kim, A study on the calcium ion extraction for PCC production, Appl. Chem. Eng., 29(1), 43-48 (2018). https://doi.org/10.14478/ace.2017.1104
  15. S. Eloneva, S. Teir, H. Revitzer, J. Salminen, A. Said, C.-J. Fogelholm, and R. Zevenhoven, Reduction of $CO_2$ emissions from steel plants by using steelmaking slags for production of marketable calcium carbonate, Steel Res. Int., 80(6), 415-421 (2009).

Cited by

  1. Detoxification of Asbestos and Recovery of Valuable Metals from Detoxified Asbestos vol.42, pp.6, 2021, https://doi.org/10.1002/bkcs.12288