• Title/Summary/Keyword: Calcium Hydroxides

Search Result 18, Processing Time 0.022 seconds

Effect of Inorganic Cementing Agents on Soil Aggregate Formation in Reclaimed Tidelands (무기 결합재의 처리가 간척지 토양의 입단형성에 끼치는 영향)

  • Son, Jae-Gwon;Choi, Jin-Kyu;Cho, Jae-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.43-47
    • /
    • 2009
  • Soil aggregation is an important part of influencing the soil behaviors in reducing rainfall-runoff and soil erosion, aeration, infiltration, and root penetration. Some inorganic materials such as clay minerals, Fe and Al oxides/hydroxides, and calcium carbonate can act as cementing agents within macroaggregates. The objective of this study was to determine the effects of different cementing agents (Fe, Mn, and Al) on soil aggregate formation in reclaimed tidelands. Water stable aggregate ratio and MWD (mean weight diameter) were higher in iron dioxides treatment than two other treatments. This result indicates significant correlation between soil aggregate formation and iron dioxides.

The investigation of As(V) removal mechanism using monosulfate (($Ca_4Al_2O_6(SO_4){\cdot}12H_2O$) and its characteristics (Monosulfate ($Ca_4Al_2O_6(SO_4){\cdot}12H_2O$)의 특성 및 수중 5가 비소 제거기작 규명)

  • Kim, K.B.;Shim, J.H.;Choi, W.H.;Park, J.Y.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.149-157
    • /
    • 2012
  • Experiments for As(V) removal using synthesized $Ca{\cdot}Al$-monosulfate was performed from the water contaminated with arsenate. Monosulfate is known as LDHs (Layered Double Hydroxides) which is one of the anionic clay minerals. Monosulfate was synthesized mixing $C_3A$ (tricalcium aluminate), gypsum (calcium sulfate), and water with an intercalation method. The product form the synthesis was characterized by FE-SEM, WDXRF, PXRD, and FT-IR. Experiments with different doses of monosulfate were carried out for kinetic. As a result of experiment, the concentration of As(V) was reduced from 0.67 mM to 0.19 mM (0.67mM of monosulfate) and 0.178 mM (1.34 mM of monosulfate). The concentration of sulfate was increased with As(V) decrease. The result of PXRD showed that the d-spacing of inter layer ($d_{003}$ peak) was shifted from 8.927 ${\AA}$ to 8.095 ${\AA}$ because the sulfate in the inter layer of monosulfate was exchanged arsenate with water molecules bonded. From the FT-IR results, a new single band (800 cm-1) was observed after the reaction of monosulfate and As(V). The arsenic removal can be regarded as anion exchange mechanism that is one of the characteristics of LDHs from the results of PXRD and FT-IR analysis.

Self-Healing Property of Hardened Cement Paste (시멘트 페이스트 경화체의 self healing 특성)

  • Kim, Jae Young;Byun, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.297-304
    • /
    • 2008
  • It is well known that cracks in concrete decrease permeability and durability of concrete because cracks enhance the penetration of water or corrosive chemicals like as chlorides, carbon dioxides, sulfates and some others. But some of cracks in hardened cements may be sealed in case of contacting water. This phenomenon is called "self healing" and it has a close relation to hydration products newly formed on surfaces of cracks. Many studies on self healing in concretes commonly showed that CSH gel has been observed on crack surfaces. And some studies have reported that calcium hydroxides and ettringite were observed as well as CSH gel on crack surfaces. This study was carried out to investigate hydration products formed by self healing process and also examine the influence of waterproof admixture for concretes on self healing of cement. As a result of XRD, DSC, SEM and EDX analysis of crack surfaces, it was found that self healing of cement was related to CSH gel, calcium hydroxides and ettringite. And waterproof admixture increased fibrous (needle-like) hydration products which were in network form. It is estimated that such fibrous products are effective for self healing process of cement system.

A Study on the Water Treatment using Shell Waste (폐패각을 이용한 수처리에 관한 연구)

  • 이민호;정태섭
    • Resources Recycling
    • /
    • v.6 no.3
    • /
    • pp.28-35
    • /
    • 1997
  • Adsorption properities of hcavy metals (Cd, Cu, Fe, Mn, Pb, Zn) and organic compounds (Trichloroethylene and T Tetrachroethy len려 on sh$\xi$1I( oyster and ark shell) were investigated using wat$\xi$r treatment matenals, The shell powder (m띠or C crystal structurc is calcium hydroxide) showed the preference adsorption for heavy metals in order of Mn > Zn > Fe > Cd > eu > P Pb. The high removal capacities of heavy metals arc helicved to be largely due to precipitation by foonation of metal c carhonat,잃 and hydroxides at high pH caused by the $Ca(OH)_2$ component of sl1ell, immobilizatIon of heavy metals in a solid I matrix by calcium‘ and fixation by insoluble organic materials in the oystcr and ark shell. The use of sh려I in water treatment h has the potential to bc benefIcial as a source of inexpensive matcrials‘ moreover, not only treatment of waste but also e environmcntal business including environmental-purification ceramics could be better off by utili낌ng high-valued waste and d developed puri'fication ceramics and media.

  • PDF

Fundamental Characteristics of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar (탄소포집 활성 고로슬래그 모르타르의 기초특성에 관한 연구)

  • Jang, Bong Jin;Kim, Seung Won;Song, Ji Hyeon;Park, Hee Mun;Ju, Min Kwan;Park, Cheolwoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.95-103
    • /
    • 2013
  • PURPOSES : To investigate the fundamental characteristics of blast-furnace slag mortar that was hardened with activating chemicals to capture and sequester carbon dioxide. METHODS : Various mix proportions were considered to find an appropriate stregnth development in regards with various dosages of activating chemicals, calcium hydroxides and sodium silicates, and curing conditions, air-dried, wet and underwater conditions. Flow characteristics was investigated and setting time of the mortar was measured. At different ages of 3, 7 and 28days, strength development was investigated for all the mix variables. At each age, samples were analyzed with XRD. RESULTS : The measured flow values showed the mortar lost its flowability as the activating chemicals amount increased in the scale of mole concentration. The setting time of the mortar was relatively shorter than OPC mortar but the initial curing condition was important, such as temperature. The amount of activating chemicals was found not to be critical in the sense of setting time. The strength increased with the increased amount of chemicals. The XRD analysis results showed that portlandite peaks reduced and clacite increased as the age increased. This may mean the $Ca(OH)_2$ keeps absorbing $CO_2$ in the air during curing period. CONCLUSIONS : The carbon capturing and sequestering activated blast-furnace slag mortar showed successful strength gain to be used for road system materials and its carbon absorbing property was verified though XRD analysis.

Improved Treatment Technique for the Reuse of Waste Solution Generated from a Electrokinetic Decontamination System (동전기제염장치에서 발생한 폐액의 재사용을 위한 개선된 처리기술)

  • Kim, Wan-Suk;Kim, Seung-Soo;Kim, Gye-Nam;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • A large amount of acidic waste solution is generated from the practical electrokinetic decontamination equipments for the remediation of soil contaminated with uranium. After filtration of uranium hydroxides formed by adding CaO into the waste solution, the filtrate was recycled in order to reduce the volume of waste solution. However, when the filtrate was used in an electrokinetic equipment, the low permeability of the filtrate from anode cell to cathode cell due to a high concentration of calcium made several problems such as the weakening of a fabric tamis, the corrosion of electric wire and the adhension of metallic oxides to the surface of cathode electrode. To solve these problems, sulfuric acid was added into the filtrate and calcium in the solution was removed as $CaSO_4$ precipitate. A decontamination test using a small electrokinetic equipment for 20 days indicated that Ca-removed waste solution decreased uranium concentration of the waste soil to 0.35 Bq/g, which is a similar to a decontamination result obtained by distilled water.

Study on Mock-up Properties of Concrete using Blast Furnace Slag and Recycled Aggregate (고로슬래그와 재생골재를 사용한 콘크리트의 실물대 특성에 관한 연구)

  • Park, Hyun;Han, Da-Hee;Park, Moo-Young;Kim, Woo-Jae;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.789-792
    • /
    • 2008
  • Blast furnace slag doesn't have self-hydraulicity and it needs stimulants such as alkali to hydrate. Therefore using recycled aggregates erupted calcium hydroxides and blast furnace slag acquiring alkali stimulate could make a complementarily use of a recycling architectural material possible. In this study, we have discussed about characters of blast furnace slag and recycled aggregate firstly, and make recycled aggregate mortar and concrete using blast furnace slag for the experiment. The experiment is about mortar and concrete using recycled aggregate as a substitutional material of blast furnace slag. In this experiment, I replace blast furnace slag and aggregate with recycled aggregate. Conclusions through the test results analysis are as follows. And then, we added field experiment using concrete with composited materials.

  • PDF

Reduction of pH of Recycled Fine Aggregate due to Natural and Artificial Treatment Method (자연 및 인위적 처리방법 변화에 따른 순환잔골재의 pH저감)

  • Han, Cheon-Goo;Han, Min-Cheol;Han, Sang-Yoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.103-110
    • /
    • 2011
  • This study is to comparatively analyze the characteristics of pH decrease in recycled fine aggregates for embankment and landfill produced from waste concrete by using natural process and artificial process. The result was as follows In case of recycled fine aggregates left outdoor, it was found that pH level was decreased if the thickness of embankment becomes thinner, or the materials left outdoors owing to high concentration of $CO_2$ in atmosphere caused by respirations of people. When the air was permeated, pH level was decreased more effectively. It was analyzed that this phenomenon was caused by efficient supply of $CO_2$ in the recycled fine aggregates owing to high-pressure ventilators. In case of water spraying treatment, sprayed water facilitated hydration of unhydrated cement to dissolve calcium hydroxides which neutralized $CO_2$ in the atmosphere during desiccation process and decrease pH level by a considerable margin. In case of Immersed treatment, decrease of pH was not sufficient. When facilitating the supply of $CO_2$, pH level of the recycled fine aggregates was decreased by the largest margin. It was analyzed that this phenomenon was caused by efficient supply of $CO_2$. From the above results, it was analyzed that the most effective method of reducing pH level of the recycled fine aggregates from the aspects of pH reduction performance, economic efficiency and workability was repeated wet-dry cycles of spraying water to the aggregates in the proportion of 1:0.5 by weight and then treating by forcefully blowing $CO_2$ gas into the aggregates.

  • PDF