• Title/Summary/Keyword: Caisson Sliding Distance

Search Result 15, Processing Time 0.021 seconds

Effect of Caisson Tilting on the Sliding Distance of a Caisson under Wave Impacts and Introduction of the Effect into Computation of Sliding Distance

  • Kim, Tae Min;Takayama, Tomotsuka
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.474-478
    • /
    • 2004
  • Based on the recent laboratory experiments (Kim et al. 2004), comparisons of caisson sliding distance are made between the computations and experiments. The time history model of wave force, which is proposed by Tanimoto et al. (1996), is modified in the standing wave part of horizontal and uplift wave forces because of the overestimation of the time history model. The comparison between experimental and computational sliding distance has showed that the caisson tilting increases the resistant force to the horizontal sliding. Therefore, a titling resistant force, which is caused by caisson tilting, is introduced into computation of sliding distance.

  • PDF

Calculation of Expected Sliding Distance of Wave Dissipating Caisson Breakwater (소파케이슨 방파제의 기대활동량 산정)

  • Kim, Dong-Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.4
    • /
    • pp.213-220
    • /
    • 2005
  • An approach to calculate expected sliding distance of wave dissipating caisson breakwater is proposed. Time history of dynamic wave pressure for the calculation of sliding distance is made by extending conventional static wave pressure developed for the wave dissipating caisson breakwater. Construction of impact wave and standing wave was done by using duration time and maximum wave pressures of themselves. In the numerical analysis, the sliding distance for an attack of single wave and expected sliding distance for 50 years of wave dissipating breakwater by proposed method were compared with those by conventional method for uplift caisson breakwater. It was found that the sliding distance of wave dissipating breakwater by the proposed method is smaller than by conventional method.

Development of Time-Dependent Reliability-Based Design Method Based on Stochastic Process on Caisson Sliding of Vertical Breakwater (직립방파제의 케이슨 활동에 대한 확률과정에 기반한 시간의존 신뢰성 설계법 개발)

  • Kim, Seung-Woo;Cheon, Sehyeon;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.5
    • /
    • pp.305-318
    • /
    • 2012
  • Although the existing performance-based design method for the vertical breakwater evaluates an average sliding distance during an arbitrary time, it does not calculate the probability of the first occurrence of an event exceeding an allowable sliding distance(i.e. the first-passage probability). Designers need information about the probability that the structure is damaged for the first time for not only design but also maintenance and operation of the structure. Therefore, in this study, a time-dependent reliability design method based on a stochastic process is developed to evaluate the first-passage probability of caisson sliding. Caisson sliding can be formulated by the Poisson spike process because both occurrence time and intensity of severe waves causing caisson sliding are random processes. The occurrence rate of severe waves is expressed as a function of the distribution function of sliding distance and mean occurrence rate of severe waves. These values simulated by a performance-based design method are expressed as multivariate regression functions of design variables. As a result, because the distribution function of sliding distance and the mean occurrence rate of severe waves are expressed as functions of significant wave height, caisson width, and water depth, the first-passage probability of caisson sliding can be easily evaluated.

Effects of Long-Term Harbor Shutdown and Temporal Operational Stoppage upon Optimal Design of Vertical Breakwater Caisson (장기간의 항만 폐쇄와 일시적 운영 중단이 직립 방파제 케이슨의 최적 설계에 미치는 영향)

  • Suh, Kyung-Duck;Kim, Deok-Lae;Kim, Kyung-Suk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.113-127
    • /
    • 2007
  • In this study, a model to calculate the expected total construction cost is developed that simultaneously considers the rehabilitation cost related to the sliding of the caisson, the economic damage cost due to harbor shutdown in the event of excessive caisson sliding, and the economic damage cost due to temporal operational stoppage by excessive wave overtopping. A discount rate is used to convert the damage costs occurred at different times to the present value. The optimal cross-section of a caisson is defined as the cross-section that requires a minimum expected total construction cost within the allowable limit for the expected sliding distance of the caisson during the lifetime of the breakwater. Two values are used for the allowable limit: 0.3 and 0.1 m. It was found that the economic damage cost due to harbor shutdown by excessive caisson sliding is more critical than the rehabilitation cost of the caisson or the economic damage cost by excessive wave overtopping in the decision of the optimal cross-section. In addition, the optimal cross-section of the caisson was shown to be determined by the allowable limit for the expected sliding distance rather than the minimum expected total construction cost as a larger value is used for the threshold sliding distance of the caisson for harbor shutdown.

Optimal Design of Breakwater Caisson Considering Expected Total Construction Cost and Allowable Sliding Distance (기대 총 건설비 및 허용 활동량을 고려한 방파제 케이슨의 최적설계)

  • Kim Kyung-Suk;Suh Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.4
    • /
    • pp.280-293
    • /
    • 2005
  • In this study, a model to calculate the expected total construction cost has been developed by combining a model to calculate the sliding distance of a caisson of a vertical breakwater and a model to calculate the rehabilitation cost of a caisson. The optimal cross-section of a caisson of a vertical breakwater is defined as the cross-section that requires a minimum expected total construction cost within the allowable limit of caisson sliding. Two allowable limits are considered: 0.1 m of the expected sliding distance during the lifetime of the breakwater and 0.1 of the probability that the cumulative sliding distance during the lifetime of the breakwater is greater than 0.3 m. A discount rate has also been introduced to convert the future rehabilitation cost to the present value. The introduction of the discount rate reduces the expected total construction cost for the caissons designed for shorter return periods due to frequent rehabilitations. The present design method requires a smaller cross-section than the conventional deterministic method in shallow water depths, enabling us to design a caisson more economically. On the other hand, the above-mentioned allowable limits of caisson sliding show similar results for smaller water depths, while, for larger depths, the former requires a larger cross-section than the latter.

Exceedance probability of allowable sliding distance of caisson breakwaters in Korea (국내 케이슨 방파제의 허용활동량 초과확률)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.495-507
    • /
    • 2009
  • The expected sliding distance for the lifetime of a caisson breakwater has a limitation to be used as the stability criterion of the breakwater. Since the expected sliding distance is calculated as the mean of simulated sliding distances for the lifetime, there is possibility for the actual sliding distance to exceed the expected sliding distance. To overcome this problem, the exceedance probability of the allowable sliding distance is used to assess the stability of sliding. Latin Hypercube sampling and Crude Monte Carlo simulation were used to calculate the exceedance probability. The doubly-truncated normal distribution was considered to complement the physical disadvantage of the normal distribution as the random variable distribution. In the case of using the normal distribution, the cross-sections of Okgye, Hwasun, and Donghae NI before reinforcement were found to be unstable in all the limit states. On the other hand, when applying the doubly-truncated normal distribution, the cross-sections of Hwasun and Donghae NI before reinforcement were evaluated to be unstable in the repairable limit state and all the limit states, respectively. Finally, the shortcoming of the expected sliding distance as the stability criterion was investigated, and we reasonably assessed the stability of sliding of caissons by using the exceedance probability of allowable sliding distance for the caisson breakwaters in Korea.

Improved Estimation for Expected Sliding Distance of Caisson Breakwaters by Employment of a Doubly-Truncated Normal Distribution (이중절단정규분포의 적용을 통한 케이슨 방파제 기대활동량 평가의 향상)

  • Kim Tae-Min;Hwang Kyu-Nam;Takayama Tomotsuka
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.4
    • /
    • pp.221-231
    • /
    • 2005
  • The present study is deeply concerned with the reliability design method(Level III) for caisson breakwaters using expected sliding distance, and the objectives of this study are to propose the employment of a doubly-truncated normal distribution and to present the validity for it. In this study, therefore, the explanations are made for consideration of effects of uncertain factors, and a clear basis that the doubly-truncated normal distribution should be employed in the computation process of expected sliding distance by Monte-Carlo simulation is presented with introduction of the employment method. Even though only caisson breakwaters are treated in this paper, the employment of doubly-truncated normal distribution can be applied to various coastal structures as well as other engineering fields, and therefore it is expected that the present study will be extended in various fields.

Assessment of New Design Wave by Spread Parameter and Expected Sliding Distance of Caisson Breakwater (확산모수와 제이슨방파제 기대활동량을 이용한 개정 설계파 분석)

  • Kim, Dong-Hyawn;Yoon, Gil-Lim;Shim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.146-150
    • /
    • 2007
  • Extreme value distributions for new deep sea wave were analyzed by using spread parameter and correlations between spread parameter and sliding distance of caisson breakwater were shown in numerical example. When spread parameter is larger than as usual, there occurred extra-ordinarily large wave height among 50 annual maximum significant waves generated by extreme value distribution. Spread parameter of new design wave is identified to be comparably larger than some foreign coastal areas and may cause large sliding displacement though deterministic safety factor for sliding is satisfied with enough margin.

Comparative Study of Design Methods for Sliding of Perforated-wall Caisson Breakwater (유공케이슨 방파제의 활동에 대한 설계법 비교 연구)

  • Kim, Nam-Hoon;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.267-277
    • /
    • 2014
  • The conventional performance-based design method for the solid-wall caisson breakwater has been extended and applied to the perforated-wall caisson. The mathematical model to calculate the sliding distance of a perforated-wall caisson is verified against hydraulic experimental data. The developed performance-based design method is then compared with the conventional deterministic method in different water depths. Both the expected sliding distance and the exceedance percentage of total sliding distance during the structure lifetime decrease with decreasing water depth outside the surf zone, but they increase with decreasing water depth inside the surf zone. The performance-based design method is either more economical or less economical than the deterministic method depending on which design criterion is used. If the criterion for the ultimate limit state is used, the former method is less economical than the latter outside the surf zone, whereas the two methods are equally economical inside the surf zone. However, if the breakwater is designed to satisfy the criterion for the repairable limit state, the former method is more economical than the latter in all water depths.

An Efficient Model for Dynamic Analysis of Caisson Breakwaters under Impulsive Wave Loadings (충격파력을 받는 케이슨 방파제의 동적 해석 모델)

  • 박우선;안희도
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.108-115
    • /
    • 1995
  • An efficient model for the dynamic analysis of caisson breakwaters under impulsive wave loadings is presented. The caisson structure is. regarded as a rigid body, and the rubble mound foundation is idealized as virtual added masses, springs, and dampers using the elastic half-space theory. The frequency-dependent hydrodynamic added mass and damping coefficients are considered by using the time memory functions and added mass at infinite frequency. To simulate the permanent sliding phenomenon of the caisson, the horizontal spring is modeled as a nonlinear spring with plastic behaviors. Comparisons with experimental results show that the present model gives fairly good results. Sensitivity analysis is performed for the relevant parameters affecting the dynamic responses of a caisson breakwater. Numerical experiments are also carried out to investigate the applicability to the prediction of permanent sliding distance and critical weight of the caisson.

  • PDF