• Title/Summary/Keyword: Cadmium selenide

Search Result 16, Processing Time 0.031 seconds

Preparation and Photoluminescence Characteristics of Liquid Silicone Rubber Containing Cadmium Selenide Nanoparticles (Cadmium Selenide Nanoparticles을 함유하는 액상실리콘 고무의 제조와 형광특성)

  • Kang Doo-Whan;Lee Byoung-Chul;Kim Ji-Young
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.266-270
    • /
    • 2006
  • Poly [(dimethylmethylyinyl) siloxane] phosphineoxide (PMViSPO) was prepared by adding phosphorus oxychloride $(POCl_3)$ to poly (dimethylmethylyinyl) siloxane (PMViS) at $0^{\circ}C$ under nitrogen atmosphere. Cadmium selenide (CdSe) was prepared by reacting cadmium oxide (CdO), tetradecyl-phosphonic acid (TDPA), trioctylphosphine oxide (TOPO) at $300^{\circ}C$, and adding solution of dissolved Se to tributylphosphine (TBP) and trioctylphosphine (TOP) CdSe-poly [(dimethylmethylvinyl) siloxane] phosphine-oxide (CdSe-SPO) adduct was synthesised by adding PMViSPO to CdSe solution. Liquid silicone rubber composite (LSRC-1) was prepared by compounding $\alpha,\omega-vinyl$ poly (dimethylsiloxane) (VPMS), $\alpha,\omega-hydrogen$) poly(dimethylsiloxane) (HPMS), and CdSe under Pt catalyst, and also LSRC-2 was prepared from VPMS, HPMS, and CdSe-SPO using Pt catalyst. It was confirmed that CdSe nanoparticles with photoluminescence characteristics was dispersed uniformly in LSR matrix. The diameter of CdSe was $30\sim50nm$. By measuring the number of CdSe nanoparticles, 202 particles of CdSe in LSRC-2 and 165 particles of CdSe in LSRC-1 were dispersed in the same area of LSR matrix. Thermal stability for LSRC-2 compounded with CdSe-SPO was better than LSRC-1.

28-Day Oral Toxicity of Cadmium Selenide in Sprague-Dawley Rats

  • Kim, Yong-Soon;Song, Moon-Yong;Kim, Jin-Sik;Rha, Dae-Sik;Jeon, Yong-Joon;Kim, Ji-Eun;Ryu, Hyeon-Yeol;Yu, Il-Je;Song, Kyung-Seuk
    • Toxicological Research
    • /
    • v.25 no.3
    • /
    • pp.140-146
    • /
    • 2009
  • This study was performed to evaluate the toxicity of cadmium selenide for a period of 28 days in Sprague-Dawley rats. Each of 10 healthy male and females rats per group received daily oral administration for 28-day period at dosage levels 30, 300 and 1,000 mg/kg of body weight. Mortality and clinical signs were checked, and body weight, water intake and food consumption were also recorded weekly. There were no dose-related changes in food consumption or urine volume. All animals survived to the end of study with no clinical signs or differences in body weight gain observed when compared with the control group. At the end of study, all animals including control group, were subjected to necropsy. Blood samples were collected for hematology tests including coagulation time and biochemistry analysis. Blood coagulation time and relative organ weight were unaffected by all received doses. White Blood Cell (WBC) counts significantly increased in the 300 mg/kg administered male animal group when compared to the control. Monocyte (MO) value were also increased significantly in both 300 and 1,000 mg/kg male animal group. However, Mean Corpuscular Volume (MCV) were significantly decreased compared with the control in the 1,000 mg/kg dose groups for male and female animals. Mean Corpuscular Hemoglobin (MCH) decreased significantly for female in the 300 and 1,000 mg/kg group compared to the control. Blood biochemical values of Inorganic phosphorus (IP) were significantly increased in both the 300 and 1,000 mg/kg dose groups in male animals when compared to the control. Creatinine (CRE) levels indicated significant increase in kidney function for the female, 30 mg/kg dose group when compared with control. There was a significant decrease in thymus absolute organ weight in the female, 1,000 mg/kg dose group when compared with control. Histopathological findings revealed no evidence of injury related to cadmium selenide except for one case of focal hepatic inflammation in the high dose (1,000 mg/kg) group. One case of lung inflammation was also seen in the control group. Basis on these result, the No Observable Adverse Effect Level (NOAEL) of cadmium selenide was determined to be more than 1,000 mg/kg/day for male and female rats under conditions in this study.

Sonochemical Synthesis of CdSe Nanoparticles from Mixed Aqueous Solution (초음파 화학법에 의한 CdSe 나노 입자의 합성)

  • Sung, Myoung-Seok;Lee, Yoon-Bok;Kim, Yong-Jin;Kim, Young-Seok;Kim, Yang-do
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.198-202
    • /
    • 2006
  • Cadmium selenide (CdSe) nanoparticles with the diameter of about 3.4nm have been synthesized from the mixed aqueous solution of distilled water and diethanolamine at room temperature. The cadmium chloride ($CdCl_2$), sodium selenosulfate ($Na_2SeSO_3$) were used as the cadmium and selenium source, respectively. The properties of CdSe nanoparticles were characterized by using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and UV-Vis measurements. CdSe nanoparticles were analyzed to be cubic phase with the absorption excition peaks between 540 and 600 nm. CdSe nanoparticles also showed red-shifted excition peaks with increasing the sonication time. This paper mainly presents the sonication effects on the formation of CdSe nanoparticles prepared from the mixed aqueous solution of distilled water and diethanolamine.

Transient Piezothermoelasticity of a Piezo Ceramic Plate Subjected to Antisymmetric Thermal Load and Symmetric Thermal Load (압전 Ceramics 평판의 비대칭열부하와 대칭열부하에 의한 과도 압전열탄성 해석에 관한 연구)

  • Kim, Gyeong-Seok;Choe, Jeong-Seok;Yang, Seung-Pil;Kim, Yong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.133-143
    • /
    • 1997
  • Piezoelastic materials have recently attracted considerable attention because of their potential use in intelligent structural systems. In this paper, we treat a transient piezothermoelastic problem in a hexagonal plate of crystal class 6mm subjected to antisymmetric heating temperature. We analyze this problem by use of the potential function method. Numerical calculations are carried out for a cadmium selenide solid, and the results are presented graphically in comparison with those derived from the similar problem in a cadmium selenide plate subjected to symmetric heating temperature for a symmetry transient problem.

Characterization of effects of cadmium selenide on the performance of poly(3-hexylthiophehe):[6,6]-phenyl $C_{61}$ butyric acid methyl ester organic solar cells (Cadmium selenide 영향에 따른 poly(3-hexylthiophehe):[6,6]-phenyl $C_{61}$ butyric acid methyl ester 유기태양전지 특성 분석)

  • Choi, Mijung;Park, Eungkyu;Yeon, Ik-Jun;Ko, Sung Sik;Kim, Yong-Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.57.1-57.1
    • /
    • 2011
  • We studied the performance of CdSe nanoparticle in the active layer of organic photovoltaics (OPVs) by changing concentration of the CdSe NPs in the P3HT:PCBM layer. We observed that the absorption peak value gradually increases with the increasing amount of CdSe NPs at 600nm wave length. However, the electrical properties of OPVs correspond less with the tendency of UV/visible result. The highest performance was shown with 10% of CdSe NPs. The device performance decreased after 10% of CdSe NPs, this shows the dependencies of performanc of hybrid solar cells on the CdSe NPs loading amount. The resulting OPVs with 10 % of CdSe NPs show a short circuit current density ($J_{sc}$) of $6.96mA/cm^2$, open circuit voltage ($V_{oc}$) of 0.61V, fill factor (FF) of 0.59, and power conversion efficiency (PCE) of 2.53% under AM 1.5 ($100mW/cm^2$).

  • PDF

Anchoring Cadmium Chalcogenide Quantum Dots (QDs) onto Stable Oxide Semiconductors for QD Sensitized Solar Cells

  • Lee, Hyo-Joong;Kim, Dae-Young;Yoo, Jung-Suk;Bang, Ji-Won;Kim, Sung-Jee;Park, Su-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.953-958
    • /
    • 2007
  • Anchoring quantum dots (QDs) onto thermodynamically stable, large band gap oxide semiconductors is a very important strategy to enhance their quantum yields for solar energy conversion in both visible and near-IR regions. We describe a general procedure for anchoring a few chalcogenide QDs onto the titanium oxide layer. To anchor the colloidal QDs onto a mesoporous TiO2 layer, linker molecules containing both carboxylate and thiol functional groups were initially attached to TiO2 layers and subsequently used to capture dispersed QDs with the thiol group. Employing the procedure, we exploited cadmium selenide (CdSe) and cadmium telluride (CdTe) quantum dots (QDs) as inorganic sensitizers for a large band gap TiO2 layer of dye-sensitized solar cells (DSSCs). Their attachment was confirmed by naked eyes, absorption spectra, and photovoltaic effects. A few QD-TiO2 systems thus obtained have been characterized for photoelectrochemical solar energy conversion.

Preparation and Characterization of Surface Capped CdSe Nanoparticles from an Aqueous Solution (수용액으로부터 표면 수식된 CdSe 나노 입자의 제조 및 특성)

  • Kim, Shin-Ho;Lee, Yoon-Bok;Kim, Yong-Jin;Kim, Yang-Do;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.663-667
    • /
    • 2006
  • CTAB(cetyltrimethylammonium bromide)-capped CdSe nanoparticles were prepared by using a 4 : 1(v/v) distilled water-isopropyl alcohol mixture. The cadmium chloride and sodium selenosulfate were used as the cadmium and selenium source. By the analysis of XRD and XPS, the resultant particle was confirmed to be cubic CdSe phase. TEM image showed CdSe nanoparticles with empty core. The CTAB-capped sample showed an maximum absorption at 418nm, blue-shifting compared with bulk CdSe, which indicated stronger quantum confinement effect compared with uncapped sample. From FT-IR analysis, it was found that the presence of the new peaks in the $850{\sim}1250cm^{-1}$ range indicated the existence of chemical bonding between CTAB and surface of CdSe nanoparticles. Also TG analysis indicated that there were two weight-loss steps for the CTAB-capped CdSe nanoparticles. It was suggested that CTAB played a significant role in protecting CdSe nanoparticles.

SnS (tin monosulfide) thin films obtained by atomic layer deposition (ALD)

  • Hu, Weiguang;Cho, Young Joon;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.305.2-305.2
    • /
    • 2016
  • Tin monosulfide (SnS) is one promising candidate absorber material which replace the current technology based on cadmium telluride (CdTe) and copper indium gallium sulfide selenide (CIGS) for its suitable optical band gap, high absorption coefficient, earth-abundant, non-toxic and cost-effective. During past years work, thin film solar cells based on SnS films had been improved to 4.36% certified efficiency. In this study, Tin monosul fide was obtained by atomic layer deposition (ALD) using the reaction of Tetrakis (dimethylamino) tin (TDMASn, [(CH3)2N]4Sn) and hydrogen sulfide (H2S) at low temperatures (100 to 200 oC). The direct optical band gap and strong optical absorption of SnS films were observed throughout the Ultraviolet visible spectroscopy (UV VIS), and the properties of SnS films were analyzed by sanning Electron Microscope (SEM) and X-Ray Diffraction (XRD).

  • PDF

Effect of fractional order on energy ratios at the boundary surface of elastic-piezothermoelastic media

  • Kumar, Rajneesh;Sharma, Poonam
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.157-174
    • /
    • 2017
  • In the present investigation reflection and transmission of plane waves at an elastic half space and piezothermoelastic solid half space with fractional order derivative is discussed. The piezothermoelastic solid half space is assumed to have 6 mm type symmetry and assumed to be loaded with an elastic half space. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence, frequency of incident wave and are influenced by the piezothermoelastic properties of media. The expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios are computed numerically using amplitude ratios for a particular model of graphite and Cadmium Selenide (CdSe). The variations of energy ratios with angle of incidence are shown graphically. The conservation of energy across the interface is verified. Some cases of interest are also deduced from the present investigation.