Preparation and Photoluminescence Characteristics of Liquid Silicone Rubber Containing Cadmium Selenide Nanoparticles

Cadmium Selenide Nanoparticles을 함유하는 액상실리콘 고무의 제조와 형광특성

  • Kang Doo-Whan (Hyperstructured Organic Materials Research Center, Department of Polymer Science & Engineering, Dankook University) ;
  • Lee Byoung-Chul (Hyperstructured Organic Materials Research Center, Department of Polymer Science & Engineering, Dankook University) ;
  • Kim Ji-Young (Hyperstructured Organic Materials Research Center, Department of Polymer Science & Engineering, Dankook University)
  • 강두환 (고차구조형 유기산업재료 연구센타 및 단국대학교 고분자공학과) ;
  • 이병철 (고차구조형 유기산업재료 연구센타 및 단국대학교 고분자공학과) ;
  • 김지영 (고차구조형 유기산업재료 연구센타 및 단국대학교 고분자공학과)
  • Published : 2006.05.01

Abstract

Poly [(dimethylmethylyinyl) siloxane] phosphineoxide (PMViSPO) was prepared by adding phosphorus oxychloride $(POCl_3)$ to poly (dimethylmethylyinyl) siloxane (PMViS) at $0^{\circ}C$ under nitrogen atmosphere. Cadmium selenide (CdSe) was prepared by reacting cadmium oxide (CdO), tetradecyl-phosphonic acid (TDPA), trioctylphosphine oxide (TOPO) at $300^{\circ}C$, and adding solution of dissolved Se to tributylphosphine (TBP) and trioctylphosphine (TOP) CdSe-poly [(dimethylmethylvinyl) siloxane] phosphine-oxide (CdSe-SPO) adduct was synthesised by adding PMViSPO to CdSe solution. Liquid silicone rubber composite (LSRC-1) was prepared by compounding $\alpha,\omega-vinyl$ poly (dimethylsiloxane) (VPMS), $\alpha,\omega-hydrogen$) poly(dimethylsiloxane) (HPMS), and CdSe under Pt catalyst, and also LSRC-2 was prepared from VPMS, HPMS, and CdSe-SPO using Pt catalyst. It was confirmed that CdSe nanoparticles with photoluminescence characteristics was dispersed uniformly in LSR matrix. The diameter of CdSe was $30\sim50nm$. By measuring the number of CdSe nanoparticles, 202 particles of CdSe in LSRC-2 and 165 particles of CdSe in LSRC-1 were dispersed in the same area of LSR matrix. Thermal stability for LSRC-2 compounded with CdSe-SPO was better than LSRC-1.

Poly [(dimethylmethylvinyl)siloxane 공중합체(PMViS)를 phosphorus oxychloride $(POCl_3)$와 반응시켜 poly [(dimethylmethylvinyl) siloxane] phosphine oxides (PMViSPO)를 제조하였다. Cadmium selenide (CdSe)는 cadmium oxide(CdO), tetradecylphosphonic acid(TDPA), trioctylphosphine oxide(TOPO)를 $300^{\circ}C$에서 반응시키고 여기에 Se를 용해시킨 tributylphosphine(TBP)과 trioctylphosphine(TOP)을 가한 다음 $320^{\circ}C$에서 반응시켜 제조하였다. 또한 CdSe 제조 용액에 PMViSPO를 가하여 CdSe-SPO adduct를 제조하였다. 백금 촉매 존재 하에서 $\alpha,\omega-vinyl$ poly(dimethylsiloxane) (VPMS), HPMS, CdSe 또는 CdSe-SPO를 고속 교반기에 취하고 컴파운딩하여 CdSe 함유 액상실리콘 고무 composite (LSRC-1)와 CdSe-SPO 함유 LSR composite (LSRC-2)를 제조하였다. 제조한 LSR composites 내에 함유된 형광 물질인 CdSe nanoparticles의 분산형태를 측정하여 입자 크기가 $30\sim50nm$인 입자가 균일하게 분포되어 있음을 확인하였고 LSRC-2의 분산도가 LSRC-1보다 우수함을 확인하였다. 또한 CdSe 입자의 개수를 측정한 결과 동일한 면적에 대하여 166개와 202개로 보다 많은 개수의 CdSe가 LSRC-2에 함유됨을 알 수 있었다. LSR composites의 열적 특성을 측정한 결과 CdSe-SPO가 함유된 LSRC-2의 열안정성이 높게 나타났다.

Keywords

References

  1. H. K. Chio and T. Yoon, Prospectives of Industrial Chemistry, 2, 41 (1999)
  2. M. S. Khun, Korea Pat., 072659 (1998)
  3. D. W. Kang, K. S. Lee, H. G. Yeo, and J. S. Shim, J. Korean Ind. Eng. Chem., 13, 594 (2002)
  4. R. G. Jones, W. Ando, and J. Chojnowski, Silicon-Containing Polymers, Kluwer Academic Publishers, Dordrecht Netherlands, 2000
  5. M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D. Harris, R. Kortan, A. P. Muller, A. M. Thayer, T. M. Duncan, D. C. Douglass, and L. E. Brus, J. Am. Chem. Soc., 110, 3046 (1988) https://doi.org/10.1021/ja00218a008
  6. A. P. Alivisatos, Science, 271, 933 (1996) https://doi.org/10.1126/science.271.5251.933
  7. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, Nature, 404, 59 (2000) https://doi.org/10.1038/35003535
  8. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc., 115, 8706 (1993) https://doi.org/10.1021/ja00072a025
  9. W. Wang and W. Geng, J. Am. Chem. Soc., 121, 4062 (1999) https://doi.org/10.1021/ja9832414
  10. Z. A. Peng and X. Peng, J. Am. Chem. Soc., 123, 183 (2001) https://doi.org/10.1021/ja003633m
  11. Z. A. Peng and X. Peng, J. Am. Chem. Soc., 123, 1389 (2001) https://doi.org/10.1021/ja0027766
  12. D. W. Kang and J. Y. Kim, J. Ind. Eng. Chem., (2006) submitted
  13. L. Manna, E. C. Scher, and A. P. Alivisatos, J. Am. Chem. Soc., 122, 12700 (2000)
  14. L. Xu, K. Chen, H. M. El-Khair, M. Li, and X. Huang, Appli. Surf. Sci., 172, 84 (2001) https://doi.org/10.1016/S0169-4332(00)00834-5
  15. H. Skaff, M. F. Ilker, E. B. Coughlin, and T. Emrick, J. Am. Chem. Soc., 124, 5729 (2002) https://doi.org/10.1021/ja012576+
  16. B. O. Dabbousi, J. R. Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Rensen, and M. G. Bawende, J. Phys. Chem. B, 101, 9463 (1997) https://doi.org/10.1021/jp971091y