• Title/Summary/Keyword: CVD합성

Search Result 173, Processing Time 0.026 seconds

Spectroscopic analysis of near colorless/pink/blue synthetic diamonds from Lightbox ('라이트박스' 무색/핑크/블루 합성 다이아몬드의 분광학적 분석)

  • Choi, Hyunmin;Kim, Youngchool;Lee, Minkyoung;Seok, Jeongwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.21-26
    • /
    • 2020
  • This article reports the result on the spectroscopic analysis of the three Lightbox CVD-grown diamonds. Lightbox Jewelry, a De Beers company, has begun selling CVD laboratory-grown diamonds since September 2018. Recently, we had the opportunity to examine three Lightbox's pendant necklaces. The 0.25 ct, 0.25 ct, and 0.26 ct round brilliant were graded as "H" near colorless, Fancy Vivid orangy pink, and Fancy Vivid blue with cut grades of excellent, respectively. The laser-inscribed Lightbox logo under the table, large enough to be easily visible with a microscope. Based on the spectroscopic techniques, for near colorless sample was not subjected to post-growth HPHT processing to improve its color. For pink sample, optical centers at H3, 3H, 594 nm, NV, and GR1 were recorded. It was speculated that the pink sample have been received irradiation and annealing. In addition, the blue CVD synthetic sample was concluded to be irradiated without annealing.

Controlling the Properties of Graphene using CVD Method: Pristine and N-doped Graphene (화학기상증착법을 이용한 그래핀의 물성 조절: 그래핀과 질소-도핑된 그래핀)

  • Park, Sang Jun;Lee, Imbok;Bae, Dong Jae;Nam, Jungtae;Park, Byung Jun;Han, Young Hee;Kim, Keun Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.169-174
    • /
    • 2015
  • In this research, pristine graphene was synthesized using methane ($CH_4$) gas, and N-doped graphene was synthesized using pyridine ($C_5H_5N$) liquid source by chemical vapor deposition (CVD) method. Basic optical properties of both pristine and N-doped graphene were investigated by Raman spectroscopy and XPS (X-ray photoemission spectroscopy), and electrical transport characteristics were estimated by current-voltage response of graphene channel as a function of gate voltages. Results for CVD grown pristine graphene from methane gas show that G-peak, 2D-peak and C1s-peak in Raman spectra and XPS. Charge neutral point (CNP; Dirac-point) appeared at about +4 V gate bias in electrical characterization. In the case of pyridine based CVD grown N-doped graphene, D-peak, G-peak, weak 2D-peak were observed in Raman spectra and C1s-peak and slight N1s-peak in XPS. CNP appeared at -96 V gate bias in electrical characterization. These result show successful control of the property of graphene artificially synthesized by CVD method.

Properties of the Natural and CVD Synthetic Diamonds for Identification (천연과 CVD 합성 다이아몬드의 감별을 위한 물성 연구)

  • Kim, Yunwoo;Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.350-356
    • /
    • 2014
  • Recently, Chemical Vapor Deposition (CVD) synthetic diamonds have been introduced to the jewelry gem market, as CVD technology has been making considerable advances. Unfortunately, CVD diamonds are not distinguishable from natural diamonds when using the conventional gemological characterization method. Therefore, we need to develop a new identification method that is non-destructive, fast, and inexpensive. In our study, we employed optical microscopy and spectroscopy techniques, including Fourier transform infra-red (FT-IR), UV-VIS-NIR, photoluminescence (PL), micro Raman, and cathodoluminescent (CL) spectroscopy, to determine the differences between a natural diamond (0.30 cts) and a CVD diamond (0.43 cts). The identification of a CVD diamond was difficult when using standard gemological techniques, UV-VIS-NIR, or micro-Raman spectroscopy. However, a CVD diamond could be identified using a FT-IR by the Type II peaks. In addition, we identified a CVD diamond conclusively with the uneven UV fluorescent local bands, additional satellite PL peaks, longer phosphorescence life time, and uneven streaks in the CL images. Our results suggest that using FT-IR combined with UV fluorescent images, PL, and CL analysis might be an appropriate method for identifying CVD diamonds.

Study on Synthesis of Dimethyl Ether Using Silica Membrane Reactor (Silica막 반응기를 이용한 Dimethyl Ether 합성에 관한 연구)

  • Sea Bongkuk;Youn Min-Young;Lee Kew-Ho
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.330-337
    • /
    • 2005
  • Water selective silica membranes were prepared fur use as membrane reactor for synthesis of dimethyl ether (DME) by methanol dehydration. Silica membranes formed on a Porous SUS tube by ultrasonic spray Pyrolysis (USP) and chemical vapor deposition (CVD) using tetraethoxysilane (TEOS) as precursor. The CVD-derived membranes formed higher level of trade-off line between water permeance and water/methanol selectivity than that of the USP-derived membranes. The membrane reactor possessing water permeance of $1.2\times10^{-7}\;mol\;{\cdot}\;m^{-2}\;{\cdot}\;S^{-1}\;{\cdot}\;Pa^{-1}$ and water/methanol selectivity of 10 exhibited increase in methanol conversion of about $20\%$ comparing to conventional reactor system. These findings led us to conclude that the dehydration membrane reactor simultaneously separating the water vapour produced in the reaction zone was effective in increasing the reaction conversion.

Synthesis of diamond thin films by R.F plasma CVD (RF플라즈마 CVD법에 의한 Diamond합성)

  • Park, Sang-Hyun;Lee, Deok-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.149-150
    • /
    • 1989
  • Diamond thin films were synthesised from the mixed gases of $CH_4$ and $H_2$ on silicon substrate by R.F plasma CVD and films deposited were investigated by SEM. XRD and Raman spectroscope. From these result, cubo-octahedral diamond particles were synthesised under the following condition: methane concentration. 1.0vol% ; pressure of reactor, 0.3torr ; R.F power, 500W ; reaction time, 20hr.

  • PDF

플라즈마 처리에 따른 그래핀의 결함(Defect)발생 연구

  • Im, Yeong-Dae;Ra, Chang-Ho;Lee, Seung-Hwan;Yu, Won-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.183-184
    • /
    • 2012
  • 플라즈마 처리에 따른 그래핀의 결함발생 연구에 대해 보고한다. 본 연구에 적용된 그래핀은 그라파이트에서 박리된 그래핀 (Exfoliated graphene: EG)과 CVD 방법으로 합성된 그래핀(CVD-G)이다. 본 연구에서는 플라즈마에 처리조건에 따른 CVD-G와 EG 간의 차이점에 대해 실험적 분석 및 이론적 해석을 수행하였다.

  • PDF

Formation of dense diamond films (조밀한 다이아몬드 막의 합성)

  • Park, Sang-Hyun;Park, Jae-Yoon;Koo, Hyo-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1503-1505
    • /
    • 2000
  • To grow the diamond films by using RF-MW mix-process, at first, diamond seeds were deposited on silicon substrate by RF plasma CVD, and then a diamond layer grown by MW plasma CVD on the seeds. The grain-size of diamond films deposited by using HF-MW mix-process was smaller and denser than those of the MW plasma CVD process. The deposited diamond films were analyzed by scanning electron microscophy, X-ray diffractometer and Raman spectroscopy.

  • PDF

Surface wave excited plasma CVD technologies for the synthesis of carbon nanomaterials (카본 나노재료 합성을 위한 표면파 플라즈마 CVD 기술)

  • Kim, Jaeho
    • Vacuum Magazine
    • /
    • v.2 no.4
    • /
    • pp.16-26
    • /
    • 2015
  • Carbon nanomaterials including nanocrystalline diamond and graphene films are expected to play a core role in $21^{st}$ century industries due to their amazing physicochemical properties. To achieve their practical utilization and industrialization, the development of their mass production technologies is strongly required. Recently, a surface wave excited plasma (SWP) which is produced using microwaves has been attracting special attentions as a candidate for the mass production technology of carbon nanomaterials. SWP can allow a low-temperature large-area plasma chemical vapor deposition (CVD) system. Here, this article introduces the promising SWP-CVD technology. Plasma characteristics in a SWP will be introduced in detail to help understanding how to use and control a SWP as a plasma source for CVD applications.

A Study on the Effect of Graphene Substrate for Growth of Vanadium Dioxide Nanostructures (이산화바나듐 나노구조물의 성장에서 그래핀 기판의 영향에 관한 연구)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.95-100
    • /
    • 2018
  • The metal oxide/graphene nanocomposites are promising functional materials for high capacitive electrode material of secondary batteries, and high sensitive material of high performance gas sensors. In this study, vanadium dioxide($VO_2$) nanostructrures were grown on CVD graphene which was synthesized on Cu foil by thermal CVD, and exfoliated graphene which was exfoliated from highly oriented pyrolytic graphite(HOPG) using a vapor transport method. As results, $VO_2$ nanostructures on CVD graphene were grown preferential growth on abundant functional groups of graphene grain boundaries. The functional groups are served to nucleation site of $VO_2$ nanostructures. On the other hand, 2D & 3D $VO_2$ nanostructures were grown on exfoliated graphene due to uniformly distributed functional groups on exfoliated graphene surface. The characteristics of morphology controlled growth of $VO_2$/graphene nanocomposites would be applied to fabrication process for high capacitive electrode materials of secondary batteries, and high sensitive materials of gas sensors.