DOI QR코드

DOI QR Code

A Study on the Effect of Graphene Substrate for Growth of Vanadium Dioxide Nanostructures

이산화바나듐 나노구조물의 성장에서 그래핀 기판의 영향에 관한 연구

  • Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
  • 김기출 (목원대학교 신소재화학공학과)
  • Received : 2018.08.30
  • Accepted : 2018.10.20
  • Published : 2018.10.31

Abstract

The metal oxide/graphene nanocomposites are promising functional materials for high capacitive electrode material of secondary batteries, and high sensitive material of high performance gas sensors. In this study, vanadium dioxide($VO_2$) nanostructrures were grown on CVD graphene which was synthesized on Cu foil by thermal CVD, and exfoliated graphene which was exfoliated from highly oriented pyrolytic graphite(HOPG) using a vapor transport method. As results, $VO_2$ nanostructures on CVD graphene were grown preferential growth on abundant functional groups of graphene grain boundaries. The functional groups are served to nucleation site of $VO_2$ nanostructures. On the other hand, 2D & 3D $VO_2$ nanostructures were grown on exfoliated graphene due to uniformly distributed functional groups on exfoliated graphene surface. The characteristics of morphology controlled growth of $VO_2$/graphene nanocomposites would be applied to fabrication process for high capacitive electrode materials of secondary batteries, and high sensitive materials of gas sensors.

금속 산화물/그래핀 형태의 복합 나노소재는 높은 전기용량을 갖는 2차 전지의 전극용 소재 또는 고감도 가스 센서의 감지물질 등으로 활용되는 매우 유용한 기능성 소재이다. 본 논문에서는 열 화학기상증착(CVD, Chemical Vapor Deposition)으로 Cu Foil 위에 대면적으로 합성된 CVD 그래핀 및 고정렬 열분해 흑연(HOPG, Highly Oriented Pyrolytic Graphite)으로부터 기계적으로 박리된 그래핀 기판 위에 이산화바나듐($VO_2$) 나노구조물을 기상수송방법으로 직접 성장시키는 연구를 수행하였다. 연구결과 CVD 그래핀 기판의 경우, 그래핀 결정 경계에서 상대적으로 많이 존재하는 기능기들이 $VO_2$ 나노구조물에서 핵형성의 씨앗으로 작용하는 것이 확인되었다. 반면에 HOPG에서 기계적으로 박리된 그래핀 나노시트 표면에는 기능기가 균일하게 분포하기 때문에, 2차원과 3차원 형태로 $VO_2$ 나노구조물이 성장되었다. 이러한 연구결과는 고기능성 $VO_2$/그래핀 나노복합소재를 이용하여 높은 전기용량을 갖는 2차 전지 전극소재 및 고감도 가스 센서의 감지물질 합성에 유용하게 활용될 것으로 전망된다.

Keywords

References

  1. G. H. Jeong, S. Baek, S. Lee & S. W. Kim (2016). Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials. Chemistry an Asian Journal, 11, 949-964. DOI : 10.1002/asia.2015010172
  2. Y. Deng, C. Fang & G. Chen. (2016). The Development of $SnO_2$/graphene Nanocomposites as Anode Materials for High Performance Lithium Ion Batteries: A review. Journal of Power Sources, 304, 81-101. DOI : 10.1126/science.1252268
  3. G. M. Thorat, H. S. Jadhav, W. J. Chung & J. G. Seo. (2018). Collective use of Deep Eutectic Solvent for One-pot Synthesis of Ternary Sn/$SnO_2@C$ Electrode for Supercapacitor. Journal of Alloys and Compounds, 732, 694-704. DOI : 10.1016/j.jallcom.2017.10.176
  4. X. Wang, et al. (2012). N-Doped Graphene-$SnO_2$ Sandwich Paper for High-Performance Lithium-Ion Batteries. Advanced Functional Materials 22, 2682-2690. DOI : 10.1002/adfm.201103110
  5. Y. Yang, et al. (2018). Phosphorized $SnO_2$/graphene Heterostructures for Highly Reversible Lithium-ion Storage with Enhanced Pseudocapacitance. Journal of Materials Chemistry A, 6, 3479-3487. DOI : 10.1039/c7ta10435a
  6. K. S. Novoselov, et al. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. DOI : 10.1126/science.1102896
  7. K. S. Kim, et al. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706-710. DOI : 10.1038/nature07719
  8. X. Li, et al. (2009). Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324, 1312-1314. DOI : 10.1126/science.1171245
  9. J. H. Lee, et al. (2014). Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science, 344, 286-289. DOI : 10.1126/science.1252268
  10. W. Wang, B. Jiang, L. Hu. Z. Lin, J. Hou & S. Jiao. (2014). Single Crystalline $VO_2$ Nanosheets: A Cathode Material for Sodium-ion Batteries with High Rate Cycling Performance. Journal of Power Sources, 250, 181-187. DOI : 10.1016/j.jpowsour.2013.11.016
  11. E. Strelcov, Y. Lilach & A. Kolmakov. (2009). Gas Sensor Baded on Metal-Insulator Transition in $VO_2$ Nanowire Thermistor. Nano Letters, 9(6), 2322-2326. DOI : 10.1021/nl900676n
  12. J. S. Choi, et al. (2016). Facile Fabrication of Properties-controllable Graphene Sheet. Scientific Reports, 6, 24525. DOI : 10.1038/srep24525
  13. B. S. Guiton, Q. Gu, A. L. Prieo, M. S. Gudiksen & H. Park. (2005). Single-Crystalline Vanadium Dioxide Nanowires with Rectangular Cross Sections. Journal of the American Chemical Society, 127, 498-499. DOI : 10.1021/ja045976g
  14. S. A. Oh & K. C. Kim. (2016). Growth of Two-dimensional Nanostructured $VO_2$ on Graphene Nanosheets. Journal of the Korea Academia-Industrial cooperation Society, 17(9), 502-507. DOI : 10.5762/KAIS.2016.17.9.502
  15. H. Wang, et al. (2012). Controllable Synthesis of Submilimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation. Journal of the American Chemical Society, 134, 3627-3630. DOI : 10.1021/ja2105976
  16. Z. Yan, et al. (2012). Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils. ACS Nano, 6(10), 9110-9117. DOI : 10.1021/nn303352k
  17. G. I. Petrov & V. V. Yakovlev. (2002). Raman Microscopy Analysis of Phase Transformation Mechanism in Vanadium Dioxide. Applied Physics Letters, 81, 1023-1025. DOI : 10.1063/1.1496506