• Title/Summary/Keyword: CULVERT

Search Result 180, Processing Time 0.034 seconds

Comparison of analysis methods of estimating behavior of soil mass above rigid culvert (암거 상부지반의 거동 평가를 위한 해석법 비교)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.71-77
    • /
    • 2018
  • In order to estimate behavior of soil mass which is located straight up of reinforced concrete culvert, Ritz method and FEM were applied and arching effects between the soil mass and adjacent soil were considered for the analyses. Analysis results obtained from the Ritz method and finite element method were compared with analytical solution. In the case of estimating nodal forces considered in FEM, caution is needed that shear stress depending on depth from ground surface should be reflected regardless of local coordinate system. Comparing the displacements computed from Ritz method with those of the analytic solution, it is seen that as the power of assumed displacement function increases, differences between the computed displacements and those of analytic solution decreases. It seems that displacements of FEM becomes closer to those of analytical solution as the number of elements are increased. It is seen that stresses computed from the Ritz method don't get closer to those of the analytic solution as the power of assumed displacement function. Stresses from FEM become closer to those of analytic solution as the number of elements are increased. Comparing the analysis results from the Ritz method and FEM with those of analytic solution, it can be seen that FEM is more reliable than Ritz method.

An Experimental Study on Debris Reduction System for Culvert (암거의 유송잡물 저감시설에 관한 실험 연구)

  • Kim, Sung-Joong;Kang, Joon-Gu;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.696-706
    • /
    • 2017
  • The purpose of this study was to verify experimentally debris reduction facilities for culverts installed in small rivers. A culvert is defined as a structure laid under a road or a railroad that passes through an inner urban area or downtown area to make an artificial canal. Culverts are generally categorized into road culverts or waterway culverts, among which the latter are artificial structures designed to discharge running water into a river. At the time of floods, the structural safety of waterway culverts can be undermined by the accumulation of debris, such as soil, boughs and weeds, and they may be at risk of overflowing due to blockages. Debris reduction facilities are necessary to prevent such damage. In this study, the effects of the three existing types of debris reduction facilities were examined through hydraulic experiments. The results of the experiments showed that vertical separation to divert debris reduced the accumulation rate by 27.65 to 31.39 percent. The two types of screen designed to block and divert debris, respectively, were found to have excellent debris blocking abilities. However, when the effects of the rising water level are considered simultaneously, the screen to divert debris was found to show superior effects. The screen to block debris can be considered to have excellent debris blocking ability, but requires the continuous collection of the debris, due to the high risk of rising water levels caused by its accumulation.

Analysis on Change of Construction Type for the Non-national Forest Road in Jeollabuk-do (전라북도 민유임도의 시기별 공종변화에 관한 연구)

  • Son, Jae-Ho;Park, Chong-Min;Lee, Joon-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.6
    • /
    • pp.652-660
    • /
    • 2007
  • The study was intended to investigate the changes of construction types of 216 non-national forest roads, which were completed between 1989 and 2005 in Jeollabuk-do, by analyzing their drawing and specification. It was found that the mean length of yearly construction has been significantly reduced after the Policy of Green Forest Roads compared with before the policy. Soil cut-off of earth work was changed from bulldozer to a combination of bulldozer and excavator. Soils were transported by truck in all design, but establishment of spoil-bank was not designed at all. The design of slope revegetation works was developed from turfing and Bastard indigo planting to seed spray, combination of seed spray and belt-sodding, and mulching with coir net and rice straw. In design of the culvert, the average interval of culvert installation was reduced to 92m in step 3, the dimension of culverts was expanded to over 600 mm after step 2, and all drainpipes were corrugated steel pipes. The design length of concrete pavement increased from 40 m/km of step 1 to 240 m/km of step 3. Thanks to the enormously increased amount of concrete pavement, the stability and functionality of forest roads could be improved. Stone masonry was the main work drawn for slope stability, and concrete retaining wall and gabion have been drawn for same object since 1999.

The Improvement of Incompatible Sliding Contact Problem Using Mesh Refinement And Its Application to Railway Skewed Culvert Problem (요소 세분화를 이용한 비적합 미끄러지는 접촉문제의 개선과 철도 사각암거 문제에의 적용)

  • Choi, Chan-Yong;Yeo, In-Ho;Chung, Keun-Young;Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.435-444
    • /
    • 2017
  • The vehicle-track structure dynamic interaction analysis problem can be treated as sliding contact problem, and it is assumed that vehicle run at a constant speed over a rail modeled as beam elements. Unfortunately, Salome-Meca can not satisfy the compatibility condition for the beam master elements, which are consist of the elements with higher order polynomial shape function, in sliding contact problem. In this study, it is suggested to use more finer beam master element mesh as the remedy for incompatibility in sliding contact problem, and the accuracy of the solution is secured. For this, the effect of beam element mesh refinement consisting runway is analysed through simple examples, and the applicability to the dynamic interaction analysis is evaluated. Finally, the dynamic interaction analysis of railway skewed culvert transition problem is carried out to evaluate the effect of supporting stiffness due to backfill pattern changes and track irregularity due to uneven subgrade settlement.

Development of a culvert design model (암거 설계 모형의 개발)

  • Ku, Hye-Jin;Jun, Kyung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.645-649
    • /
    • 2008
  • 노모그래프 또는 간략식을 이용하여 암거 설계를 하는 경우 암거 흐름이 자유수면을 가지는 개수로라면 정확한 흐름 해석을 할 수 없다. 특히 암거는 수리학적으로 짧기 때문에 암거 흐름에서 등류수심이 발생하지 않을 가능성이 높다. 이에 부등류(점변류) 해석을 이용하여 암거의 흐름 해석을 수행하도록 흐름 해석 모형을 개발하여 검증하고, 이를 기반으로 암거의 단면규격을 결정하는 설계모형을 개발하였다. 암거의 수리설계는 고려하고 있는 모든 단면에 대하여 흐름 해석을 수행하고, 산정된 상류수위(HWE)와 암거높이에 대한 상류수심의 비(H/D)가 허용치를 초과하지 않는 최적 단면을 설계 단면으로 결정한다.

  • PDF

A Case Study on Repairing Work of Leakage of River-crossing Underground Structure (하천통과 지하구조물의 누수 보수 대책)

  • 이종은;최석원;노현창
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.801-809
    • /
    • 2000
  • Until recently as a method of repairing leaking problem, generally urethane series were used for many structures as subway, box culvert etc. However the lacking of sufficient penetration capacity have made it difficult to repair such structures completely. Now, we could achieve enhanced quality of repairing work by using new material which was compounded of urethane series and cement series properly. This material can penetrate concrete structure efficiently and move interactively with the structure in case of the thermal expansion. Besides of this, we could prevent expecting leakage through several improvements on the aspects of design, materials and site implementation.

  • PDF

Hydraulic Computation and Stress Analysis of Box Culvert (암거의 수리 및 응력계산)

  • 함준호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.1
    • /
    • pp.2557-2569
    • /
    • 1972
  • Hydraulic computations to determine the elevation of canal bottom and mater surface for box type concrete culverts are discussed. Velocity and cross sectional area of flow are computed from Manning's formula. Aad then head loss and velocity head are considered to determine the elevation of bottom and water surface. For stress analysis, 13.5 ton live load and earth pressure are considered. Also longitudinal stress of box culverts is checked.

  • PDF

A Study of Smokeproof Facility+ in Underground Culvert (지하공동구의 연소방지설비에 관한 연구)

  • 홍경표;이영재;김선정
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.284-293
    • /
    • 2001
  • 본 연구는 지하공동구내의 화재가 자주 발생하므로 도시가 마비되고 그 피해는 국민생활을 위협하고 막대한 재산 및 인명피해를 내고 있다. 지하공동구 화재로 인한 조기진압은 소방법의 연소방지설비 기준에 적용하였을 경우 화재 진압시 문제가 있다고 판단된다. 지하공동구의 연소방지설비 중에는 여러방식을 적용할 수가 있다. 본 연구는 물로 이용한 연소방지설비 방식중 스프링클러설비, 연결살수설비, 물분부설비 등이 있으나 아직 소방법에서 거론되지 않는 일명 워터 미스트 방식에 대해서 연구하고 방안제시를 하므로 이 논문지가 연소방지설비의 기초자료가 되었으면 한다.

  • PDF

Earth Pressure on the Underground Box Structure (지중 박스구조물에 작용하는 토압)

  • 이상덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.243-250
    • /
    • 2000
  • The mechanical behavior of the underground box culvert constructed by the open cut method depends mainly on the earth pressure acting on it. In this study, the earth pressure on the underground box culverts constructed by the open cut method during and after the construction sequence was numerically analysed by using FLAC. The results are compared with those of the Marston-Spangler's theory, silo theory, and the model tests. The results showed that the vertical earth pressure on the upper slab of the box structure was not uniform. It was as large as the overburden in the middle part of the slab but was smaller or larger than that at its end part depending on the slope of the excavation, the depth of the cover, and the width of the side refill. The horizontal earth pressure on the side wail was much smaller than the earth pressure at rest and grew nonlinearly with the depth.

  • PDF

A Study on Joint Position at Concrete Pavement with Box Culverts (박스 암거가 통과하는 콘크리트 포장의 줄눈 위치에 관한 연구)

  • Park, Joo-Young;Sohn, Dueck-Su;Lee, Jae-Hoon;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.45-53
    • /
    • 2012
  • Hollows are easily made and bearing capacity is lowered near underground structures of concrete pavement because of poor compaction and long term settlement of the ground. Distresses occur and lifespan is shortened because of larger stress induced by external loadings expected than that in the design. In this paper, the distresses of the concrete pavement slab over box culverts were investigated at the Korea Expressway Corporation(KEC) test road. The transverse cracking of the slabs over the culverts was compared between up and down lines with different soil cover depth. The box culvert without soil cover and concrete pavement were modeled and analyzed by the finite element method(FEM) to verify the transverse cracking at the test road. Wheel loading was applied after self weight of the pavement and temperature gradient of the concrete slab at Yeojoo, Gyeonggi where the test road is located were considered. Positions of maximum tensile stress and corresponding positions of the wheel loading were found for each loading combination. Joint position minimizing the maximum tensile stress was found and optimal slab length over the culverts with diverse size were suggested.