• Title/Summary/Keyword: CT data

Search Result 1,288, Processing Time 0.039 seconds

Impact of Contrast agent for Attenuation Correction Using CT Scan in PET/CT System (PET/CT 시스템에서 CT 영상을 이용한 감쇠 보정 시 조영제가 PET 영상에 미치는 영향)

  • Son, Hye-Kyung;Turkington, Timothy G;Kwon, Yun-Young;Bong, Jung-Kyun;Jung, Hai-Jo;Kim, Hee-Joung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.100-103
    • /
    • 2004
  • Experiments and simulation were done to study the impact of contrast agent when CT scan was used to attenuation correction for PET images in PET/CT system. Whole body phantom was imaged with various concentration of iodine-based contrast agent using CT. Mathematical emission and transmission density map with liver were made to simulate for whole body FDG imaging. Various transmission density maps was generated with non-uniform enhancement of contrast agent, hypo-attenuating of contrast agent for tumor, different concentration of contrast agent, and so on. Attenuation correction was done with all transmission maps. In the experiments, we confirmed that attenuation coefficient was changed by concentration of contrast agent. From the simulation data, image quality of attenuation corrected images was affected by contrast agent and artifact was produced by contrast agent. These results indicated that the contrast agent should be used with a full understanding of its potential problem in PET/CT system.

  • PDF

Impact of Contrast Agent for PET Images with CT-based Attenuation Correction (CT 영상을 이용한 감쇠 보정 시 조영제가 PET 영상에 미치는 영향)

  • Son Hye-Kyung;Turkington Timothy G.;Kwon Yun-Young;Jung Haijo;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.192-201
    • /
    • 2005
  • Experiments and simulation were done to study the impact of contrast agent when CT scan was used to attenuation correction for PET Images in PET/CT system. Whole body phantom was imaged with various concentration of iodine-based contrast agent using CT. Mathematical emission and transmission density map with liver were made to simulate for whole body FDG Imaging. A variety of factors were estimated, including non-uniform enhancement of contrast agent, concentration and distribution size of contrast agent, noise level, image resolution, reconstruction algorithm, hypo-attenuation of contrast agent, and different time phases for contrast agent. Experimental studies showed that Hounsfield unit depends on the concentration of contrast agent and tube voltage. From the simulation data, contrast agents Introduced artifacts and degraded image quality on the attenuation-corrected PET images. The severity of these effects depends on a variety of factors, including the concentration and distribution size of contrast agent, the noise levels, and the Image resolution. These results Indicated that the impact of contrast agents should be considered with a full understanding of their potential problems in clinical PET/CT images.

  • PDF

The Study of Radiation Exposure Reduction by Developing Corpus Striatum Phantom (두개골-선조체 팬텀을 이용한 선량 저감화 방안 연구)

  • Kim, Jung-Soo;Park, Chan-Rok
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.595-603
    • /
    • 2017
  • The study is to produced a brain phantom simulating corpus striatum, which can evaluate the progression of parkinson's disease, to investigate possibility of reducing the brain exposure dose to CT while maintaining optimal image quality during PET-CT examinations. CT scans were performed by varying tube voltage (100, 120 kVp) and tube current (80, 140, 200 mAs) with $^{18}F$ FP-CIT injected into the phantom's hot sphere and background (radioactivity ratio 3:1)(reference condition; 120 kVp, 140 mAs). Estimated effective dose was calculated by using conversion factor according to each condition, and image quality was evaluated by setting SNR and CRChot image evaluation factors. Experimental results showed that the predicted effective dose below the CT imaging reference condition was reduced by at least 10% and by up to 60%, and the predicted effective dose beyond the reference condition was increased by 40%. In addition, there was no significant difference between SNR and CRChot of PET images, and it was confirmed that brain dose decreased with decrease of tube voltage and tube current. At the same time, there was no significant change in the quality of the image in terms of SNR and CRChot despite the change in scan conditions. This fact suggests that the quality of the images acquired under the existing dose conditions can be obtained even at low dose conditions and it is expected that it will be possible to use the brain PET-CT scan as a basic data for the research on reduction of dose and improvement of image quality.

Clinical Significance of Follow-up CT after Ultrasonography for Acute Appendicitis in Children (소아 급성 충수염에서 복부초음파 이후 전산화단층촬영 추적 검사의 임상적 의의)

  • Yu, Seong-Keun;Moon, Jin-Soo;Kim, Nam-Hee;Hwang, Jong-Hee;Nam, Seung-Yeon;Kim, Dong-Wook;Lee, Chong-Guk;Seo, Jung-Wook;Heo, Tae-Gil
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.10 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • Purpose: The ultrasonography (USG) and computed tomography (CT) are popular diagnostic tools for the diagnosis of acute appendicitis in children, but there are many debates about their clinical significance. The purpose of this study is to clarify the clinical significance of USG, CT and follow-up CT performed subsequently to USG, especially in perforated acute appendicitis in children. Methods: We have reviewed 419 cases of surgically confirmed acute appendicitis in children under the age of sixteen, who had been treated in Inje University Ilsan Paik Hospital from March 2002 to February 2006. All the clinical data including the results of USG and CT were collected and analyzed. Results: Sensitivity, specificity, positive and negative predictive values of USG were 98.7%, 96.8%, 98.1%, 97.8% in non-perforation group and 90.8%, 100%, 100%, 81.9% in perforation group. Those of CT were 96.4%, 100%, 100%, 96.5% and 86.6%, 100%, 100%, 87.5% respectively. Those of follow-up CT after USG were 100%, 100%, 100%, 100% and 87.5%, 100%, 100%, 92.0% respectively. The duration of using antibiotics in seven patients showed positive correlation with the interval between two imaging studies (r=0.0472, p=0.019). There was no statistical significance of correlation when these imaging studies performed within 30 hours together. Conclusion: In most of the cases, single choice between USG and CT would be enough to diagnose the acute appendicitis in children. But, it may be helpful to perform CT as early as possible subsequently to USG when there is discrepancy between initial USG and clinical impression.

  • PDF

Analysis of Patient Effective Dose in PET/CT; Using CT Dosimetry Programs (CT 선량 측정 프로그램을 이용한 PET/CT 검사 환자의 예측 유효 선량의 분석)

  • Kim, Jung-Sun;Jung, Woo-Young;Park, Seung-Yong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.77-82
    • /
    • 2010
  • Purpose: As PET/CT come into wide use, it caused increasing of expose in clinical use. Therefore, Korea Food and Drug Administration issued Patient DRL (Diagnostic Reference Level) in CT scan. In this study, to build the basis of patient dose reduction, we analyzed effective dose in transmission scan with CT scan. Materials and Methods: From February, 2010 to March 180 patients (age: $55{\pm}16$, weight: $61.0{\pm}10.4$ kg) who examined $^{18}F$-FDG PET/CT in Asan Medical Center. Biograph Truepoint 40 (SIEMENS, GERMANY), Biograph Sensation 16 (SIEMENS, GERMANY) and Discovery STe8 (GE healthcare, USA) were used in this study. Per each male and female average of 30 patients doses were analyzed by one. Automatic exposure control system for controlling the dose can affect the largest by a patient's body weight less than 50 kg, 50-60 kg less, 60 kg more than the average of the three groups were divided doses. We compared that measured value of CT-expo v1.7 and ImPACT v1.0. The relationship between body weight and the effective dose were analyzed. Results: When using CT-Expo V1.7, effective dose with BIO40, BIO16 and DSTe8 respectably were $6.46{\pm}1.18$ mSv, $9.36{\pm}1.96 $mSv and $9.36{\pm}1.96$ mSv for 30 male patients respectably $6.29{\pm}0.97$ mSv, $10.02{\pm}2.42$ mSv and $9.05{\pm}2.27$ mSv for 30 female patients respectably. When using ImPACT v1.0, effective dose with BIO40, BIO16 and DSTe8 respectably were $6.54{\pm}1.21$ mSv, $8.36{\pm}1.69$ mSv and $9.74{\pm}2.55$Sv for 30 male patients respectably $5.87{\pm}1.09$ mSv, $8.43{\pm}1.89$ mSv and $9.19{\pm}2.29$ mSv for female patients respectably. When divided three groups which were under 50 kg, 50~60 kg and over 60 kg respectably were 6.27 mSv, 7.67 mSv and 9.33 mSv respectably using CT-Expo V1.7, 5.62 mSv, 7.22 mSv and 8.91 mSv respectably using ImPACT v1.0. Weight and the effective dose coefficient analysis showed a very strong positive correlation(r=743, r=0.693). Conclusion: Using such a dose evaluation programs, easier to predict and evaluate the effective dose possible without performing phantom study and such dose evaluation programs could be used to collect basic data for CT dose management.

  • PDF

Diagnostic Performance of Deep Learning-Based Lesion Detection Algorithm in CT for Detecting Hepatic Metastasis from Colorectal Cancer

  • Kiwook Kim;Sungwon Kim;Kyunghwa Han;Heejin Bae;Jaeseung Shin;Joon Seok Lim
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.912-921
    • /
    • 2021
  • Objective: To compare the performance of the deep learning-based lesion detection algorithm (DLLD) in detecting liver metastasis with that of radiologists. Materials and Methods: This clinical retrospective study used 4386-slice computed tomography (CT) images and labels from a training cohort (502 patients with colorectal cancer [CRC] from November 2005 to December 2010) to train the DLLD for detecting liver metastasis, and used CT images of a validation cohort (40 patients with 99 liver metastatic lesions and 45 patients without liver metastasis from January 2011 to December 2011) for comparing the performance of the DLLD with that of readers (three abdominal radiologists and three radiology residents). For per-lesion binary classification, the sensitivity and false positives per patient were measured. Results: A total of 85 patients with CRC were included in the validation cohort. In the comparison based on per-lesion binary classification, the sensitivity of DLLD (81.82%, [81/99]) was comparable to that of abdominal radiologists (80.81%, p = 0.80) and radiology residents (79.46%, p = 0.57). However, the false positives per patient with DLLD (1.330) was higher than that of abdominal radiologists (0.357, p < 0.001) and radiology residents (0.667, p < 0.001). Conclusion: DLLD showed a sensitivity comparable to that of radiologists when detecting liver metastasis in patients initially diagnosed with CRC. However, the false positives of DLLD were higher than those of radiologists. Therefore, DLLD could serve as an assistant tool for detecting liver metastasis instead of a standalone diagnostic tool.

Accuracy of simulation surgery of Le Fort I osteotomy using optoelectronic tracking navigation system (광학추적항법장치를 이용한 르포씨 제1형 골절단 가상 수술의 정확성에 대한 연구)

  • Bu, Yeon-Ji;Kim, Soung-Min;Kim, Ji-Youn;Park, Jung-Min;Myoung, Hoon;Lee, Jong-Ho;Kim, Myung-Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.2
    • /
    • pp.114-121
    • /
    • 2011
  • Introduction: The aim of this study was to demonstrate that the simulation surgery on rapid prototype (RP) model, which is based on the 3-dimensional computed tomography (3D CT) data taken before surgery, has the same accuracy as traditional orthograthic surgery with an intermediate splint, using an optoelectronic tracking navigation system. Materials and Methods: Simulation surgery with the same treatment plan as the Le Fort I osteotomy on the patient was done on a RP model based on the 3D CT data of 12 patients who had undergone a Le Fort I osteotomy in the department of oral and maxillofacial surgery, Seoul National University Dental Hospital. The 12 distances between 4 points on the skull, such as both infraorbital foramen and both supraorbital foramen, and 3 points on maxilla, such as the contact point of both maxillary central incisors and mesiobuccal cuspal tip of both maxillary first molars, were tracked using an optoelectronic tracking navigation system. The distances before surgery were compared to evaluate the accuracy of the RP model and the distance changes of 3D CT image after surgery were compared with those of the RP model after simulation surgery. Results: A paired t-test revealed a significant difference between the distances in the 3D CT image and RP model before surgery.(P<0.0001) On the other hand, Pearson's correlation coefficient, 0.995, revealed a significant positive correlation between the distances.(P<0.0001) There was a significant difference between the change in the distance of the 3D CT image and RP model in before and after surgery.(P<0.05) The Pearson's correlation coefficient was 0.13844, indicating positive correlation.(P<0.1) Conclusion: Theses results suggest that the simulation surgery of a Le Fort I osteotomy using an optoelectronic tracking navigation system I s relatively accurate in comparing the pre-, and post-operative 3D CT data. Furthermore, the application of an optoelectronic tracking navigation system may be a predictable and efficient method in Le Fort I orthognathic surgery.

Comparison of Monitor Units Obtained from Measurements and ADAC Planning System for High Energy Electrons (측정과 ADAC 치료계획 시스템에서 계산된 고에너지 전자선의 Monitor Unit Value 비교)

  • Lee, Re-Na;Choi, Jin-Ho;Suh, Hyun-Suk
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.202-208
    • /
    • 2002
  • The purpose of this study is to evaluate the monitor unit obtained from various methods for the treatment of superficial cancers using electron beams. Thirty-three breast cancer patients who were treated in our institution with 6, 9, and 12 MeV electron beams, were selected for this study. For each patient, irregularly shaped treatment blocks were drawn on simulation film and constructed. Using the irregular blocks, monitor units to deliver 100 cGy to the dose maximum (dmax) were calculated from measurement and three-dimensional radiation treatment planning (3D RTP) system (PINNACLE 6.0, ADAC Laboratories, Milpitas CA) Measurements were made in solid water phantom with plane parallel (PP) chamber (Roos, OTW Germany) at 100 cm source-to surface distances. CT data was used to investigate the effect of heterogeneity. Monitor units were calculated by overriding CT values with 1 g/㎤ and in the presence of heterogeneity. The monitor unit values obtained by the above methods were compared. The dose, obtained from measurement in solid water phantom was higher than that of RTP values for irregularly shaped blocks. The maximum differences between monitor unit calculated in flat water phantom at gantry zero position were 4% for 6 MeV and 2% for 9 and 12 MeV electrons. When CT data was used at a various gantry angle the agreement between the TPS data with and without density correction was within 3% for all energies. These results indicate that there are no significant difference in terms of monitor unit when density is corrected for the treatment of breast cancer patients with electrons.

  • PDF

Diagnosis and Visualization of Intracranial Hemorrhage on Computed Tomography Images Using EfficientNet-based Model (전산화 단층 촬영(Computed tomography, CT) 이미지에 대한 EfficientNet 기반 두개내출혈 진단 및 가시화 모델 개발)

  • Youn, Yebin;Kim, Mingeon;Kim, Jiho;Kang, Bongkeun;Kim, Ghootae
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.150-158
    • /
    • 2021
  • Intracranial hemorrhage (ICH) refers to acute bleeding inside the intracranial vault. Not only does this devastating disease record a very high mortality rate, but it can also cause serious chronic impairment of sensory, motor, and cognitive functions. Therefore, a prompt and professional diagnosis of the disease is highly critical. Noninvasive brain imaging data are essential for clinicians to efficiently diagnose the locus of brain lesion, volume of bleeding, and subsequent cortical damage, and to take clinical interventions. In particular, computed tomography (CT) images are used most often for the diagnosis of ICH. In order to diagnose ICH through CT images, not only medical specialists with a sufficient number of diagnosis experiences are required, but even when this condition is met, there are many cases where bleeding cannot be successfully detected due to factors such as low signal ratio and artifacts of the image itself. In addition, discrepancies between interpretations or even misinterpretations might exist causing critical clinical consequences. To resolve these clinical problems, we developed a diagnostic model predicting intracranial bleeding and its subtypes (intraparenchymal, intraventricular, subarachnoid, subdural, and epidural) by applying deep learning algorithms to CT images. We also constructed a visualization tool highlighting important regions in a CT image for predicting ICH. Specifically, 1) 27,758 CT brain images from RSNA were pre-processed to minimize the computational load. 2) Three different CNN-based models (ResNet, EfficientNet-B2, and EfficientNet-B7) were trained based on a training image data set. 3) Diagnosis performance of each of the three models was evaluated based on an independent test image data set: As a result of the model comparison, EfficientNet-B7's performance (classification accuracy = 91%) was a way greater than the other models. 4) Finally, based on the result of EfficientNet-B7, we visualized the lesions of internal bleeding using the Grad-CAM. Our research suggests that artificial intelligence-based diagnostic systems can help diagnose and treat brain diseases resolving various problems in clinical situations.

Phase Segmentation of PVA Fiber-Reinforced Cementitious Composites Using U-net Deep Learning Approach (U-net 딥러닝 기법을 활용한 PVA 섬유 보강 시멘트 복합체의 섬유 분리)

  • Jeewoo Suh;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.323-330
    • /
    • 2023
  • The development of an analysis model that reflects the microstructure characteristics of polyvinyl alcohol (PVA) fiber-reinforced cementitious composites, which have a highly complex microstructure, enables synergy between efficient material design and real experiments. PVA fiber orientations are an important factor that influences the mechanical behavior of PVA fiber-reinforced cementitious composites. Owing to the difficulty in distinguishing the gray level value obtained from micro-CT images of PVA fibers from adjacent phases, fiber segmentation is time-consuming work. In this study, a micro-CT test with a voxel size of 0.65 ㎛3 was performed to investigate the three-dimensional distribution of fibers. To segment the fibers and generate training data, histogram, morphology, and gradient-based phase-segmentation methods were used. A U-net model was proposed to segment fibers from micro-CT images of PVA fiber-reinforced cementitious composites. Data augmentation was applied to increase the accuracy of the training, using a total of 1024 images as training data. The performance of the model was evaluated using accuracy, precision, recall, and F1 score. The trained model achieved a high fiber segmentation performance and efficiency, and the approach can be applied to other specimens as well.