• Title/Summary/Keyword: CT선량

Search Result 636, Processing Time 0.02 seconds

Measurement of Radiation Dose of HR CT and Low Dose CT by using Anthropomorphic Chest Phantom and Glass Dosimetry (인체등가형 흉부팬텀과 유리선량계를 이용한 고해상력 및 저선량 CT의 선량측정)

  • Kweon, Dae Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.933-939
    • /
    • 2019
  • The purpose of this study is to provide basic clinical data by evaluating images, measuring absorbed dose and effective dose by using high resolution CT and low dose CT by using anthropomorphic chest phantom and glass dosimeter. Tissue dose was measured by inserting a glass dosimeter into the anthropomorphic chest phantom. A 64-slice CT system (SOMATOM Sensation 64, Siemens AG, Forchheim, Germany) and CARE Dose 4D were used, and the parameters of the high resolution CT were 120 kVp, Eff. Scan parameters of mAs 104, scan time 7.93 s, slice 1.0 mm (Acq. 64 × 0.6 mm), convolution kernel (B60f sharp) were used, and low dose CT was 120 kVp, Eff. mAs 15, scan time 7.41 s, slice 3.0 mm (Acq. 64 × 0.6 mm), scan of convolution kernel B50f medium sharp. CTDIvol was measured at 8.01 mGy for high resolution CT and 1.18 mGy for low dose CT. Low dose CT scans showed 85.49% less absorbed dose than high resolution CT scans.

Usefulness Evaluation of Low-dose CT for Emphysema : Compared with High-resolution CT (폐기종에 대한 저선량 CT의 유용성 평가: 고해상도 CT와 비교)

  • Lee, Won-Jeong
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.329-336
    • /
    • 2016
  • The purpose of this study was to evaluate the usefulness of low-dose CT (LDCT) for emphysema compared with high-resolution CT (HRCT). Measurements of radiation dose and noise were repeated 3 times in same exposure condition which was similar with obtaining HRCT and LDCT images. We analysed reading results of 146 subjects. Six images per participants selected for emphysema grading. Emphysema was graded for all 6 zones on the left and right sides of the lungs by the consensus reading of two chest radiologists using a 4-point scale. Between the HRCT and LDCT images, diagnostic differences and agreements for emphysema were analyzed by McNemar's and unweighted kappa tests, and radiation doses and noise by a Mann-Whitney U-test, using the SPSS 19.0 program. Radiation dose from HRCT was significantly higher than that of LDCT, but the noise was significantly lower in HRCT than in LDCT. Diagnostic agreement for emphysema between HRCT and LDCT images was excellent (k-value=0.88). Emphysema grading scores were not significantly different between HRCT and LDCT images for all six lung zones. Emphysema grading scores from LDCT images were significantly correlated with increased scores on HRCT images (r=0.599, p < 0.001). Considering the tradeoff between radiation dose and image noise, LDCT could be used as the gold standard method instead of HRCT for emphysema detection and grading.

Correlation Analysis of between Patient and Equipment Factors and Radiation Dose in Chest Low Dose and Abdominal Non-contrast CT (흉부 저선량 및 복부 비조영 CT 검사에서 환자 및 장비 인자와 선량과의 상관관계 분석)

  • Shim, Jina;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.117-123
    • /
    • 2021
  • This paper is to establish a basis for a dose reduction strategy by confirming correlations with the factors that may affect the radiation dose based on the dose records in low-dose chest CT and abdominal non-contrast CT. In order to find out the causes of unnecessary exposure, the correlation between seven factors (age, gender, height, weight, BMI, patient status [inpatient and outpatient], and use of dose modulation) and CT dose were identified. Logistic regression was used as the statistical analysis for correlation verification. In the low dose chest CT, as the higher values of height and BMI and dose modulation off were associated with lowering the risk exceeding Diagnostic Reference Levels(DRL) (odds ration<1, p<0.05). However, as woman compared to man and the higher values of weight were associated with highering the risk exceeding DRL (odds ration>1, p<0.05). In the abdomen CT, as dose modulation off were associated with lowering the risk exceeding DRL (odds ration<1, p<0.05). Therefore It is necessary to conduct research on the relationship between various factors affecting radiation exposure and patient radiation dose for reducing the dose.

Radiation dose and Lifetime Attributable Risk of Cancer Estimates in 64-slice Multidetector Computed Tomography (64-절편 다행검출 CT 검사에서의 환자선량과 암 발생의 Lifetime Attributable Risk(LAR) 평가)

  • Kang, Yeong-Han;Park, Jong-Sam
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.244-252
    • /
    • 2011
  • This study was to estimate the radiation dose associated with 64-slice multidetector CT(MDCT) in clinical practice and quantify the potential cancer risk associated with these examinations. Lifetime attributable risks(LAR) were estimated with models developed in the national Academies' Biological Effects of Ionizing Radiation VII report. Mean effective dose were 1.48mSv in Brain axial scan, 7.66mSv in chest routine contrast, 12.17mSv in coronary angiogram, 24.52mSv in Dynamic abdomen scan. LAR estimates for brain routine varied from 1 in 7463 for man to 1 in 4926 for women. In chest routine with contrast, LAR varied from 1 in 1449 for men to 1 in 952. LAR of Abdomen dynamic CT varied from 1 in 453 for men to 1 in 298 for women. So, 64-slice MDCT scan is associated with non-negligible LAR of cancer. Doses can be reduced by careful attention to scanning protocol.

Basic Principles of CT Dose Index and Understanding of CT Parameter for Dose Reduction Technique (CT선량지표의 원리와 선량감소 방안에 관한 연구)

  • Kim, Jung-Su;Kwon, Soon-Mu;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2015
  • Computed tomography(CT) using radiation have potential risks. All medical radiographic examinations should require the justification of medical imaging examinations and optimization of the image quality and radiation exposure. The CT examination was higher radiation dose then general radiography. Especially pediatric CT examinations need to great caution of radiation risk. Because of pediatric patient was more sensitive of radiation exposure. Therefore, physician should consider the knowledge of CT radiation exposure indicator information for reduce a needless radiation exposure. This article was aim to understanding of CT exposure indicator, size-specific dose estimates by American Association of Physicists in Medicine (AAPM) report 204, XR 25 and understanding of CT dose reduction technique.

Treatment planning of Lung Cancer with Density corrected Computed Tomography (밀도를 입력한 CT planning을 이용한 Lung Cancer의 치료계획)

  • 김성규;김명세;신세원;홍정숙
    • Progress in Medical Physics
    • /
    • v.4 no.2
    • /
    • pp.19-25
    • /
    • 1993
  • Treatment planning of lung cancer with density corrected Computed tomography. Eighty-seven patients with lung cnacer who had radiation therapy in Yeungnam University Medical Center between, April 1 1990 and Aug. 30 1993 were retrospectively evaluated total tumor dose, dose distribution, field correction, and loading change, compared with contour or CT image planning and density corrected CT planning. In dose distribution, higher dose was calculated in compare with density corrected CT planning less than 5% difference were found in 45 patient(52%), 5-10% in 25 patients (29%), 10-15% in 15 patients (17%) and over 15% in 2 patients (2%). Correction of treatment field was performed in 18 patients (21%) and changing of dose loading was given in 15 patients (17%). In conclusion, we emphasize that density corrected CT planning is the very important factor which contribute to increase therapeutic gain by exact selection of target volume, target dose, normal tissue dose and dose of critical organ.

  • PDF

Assessment of the Effective Dose to the Human Body and Estimation of Lifetime Attributable Risk by CT Examination (CT 검사별 노출되는 유효선량과 생애 암 귀속 위험도 평가)

  • Cho, Yong In;Kim, Jung Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.169-178
    • /
    • 2020
  • The number of CT scans is increasing every year due to the improvement of the medical standards of the public, and thus the annual dose of medical radiation is also increasing. In this study, we evaluated the effective dose of the human body exposed to CT scans and estimated LAR. First, five region were selected from the CT diagnostic reference level guideline, and the effective dose of human body exposed to each examination was evaluated by clinical CT device. Second, the human organs and effective dose were calculated using the ALARA-CT program under the same conditions. Third, lifetime attributable risk (LAR) estimated by the effective dose exposed through the previous CT scan was estimated. As a result, the most effective dose was 21.18 mSv during the abdomen 4 phase scan, and the dose level was below DRL for all other tests except for the abdominal examination. As a result of evaluating effective dose using a dose calculation program under the same conditions, the results showed about 1.1 to 1.9 times higher results for each examination. In the case of organ dose, the closer the organ to the scan site, the higher the scattering ray. The lifetime attributable risk to CT radiation dose in adults was gradually decreased with age, and the results were somewhat different according to gender.

Comparative Evaluation of Single-Energy CT and Dual-Energy CT in Brain Angiography : Using a Rando Phantom and OSLD (뇌혈관조영검사 시 단일에너지 CT와 이중에너지 CT의 비교평가 : 화질 및 유효선량평가)

  • Byeong-Geun Shin;Seong-Min Ahn
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.809-817
    • /
    • 2023
  • Single source and dual source measurements using anthropomorphic phantoms in which the phantoms are lined up in human body equivalents use OSLD (Optically Stimulated Luminescence Dosimeter), so the effective dose is calculated using OSLD. For hospital images, SNR (Signal to Noise Ratio) and CNR (Contrast to Noise Ratio) were measured in MCA (Middle Cerebral Artery) for single source and dual source, and for phantom images, SNR and CNR were measured for brain parenchyma of single source and dual source. For hospital imaging, SNR and CNR were measured in MCA for both single-source and dual-source, and for phantom images, SNR and CNR were measured for brain parenchyma from single-source and dual-source. As a result of comparing the SNR and CNR of the hospital image and the phantom image, there was no statistical difference. Comparing patient doses in hospital images, the effective dose of the dual source was 53.53% less and the effective dose of the dual energy phantom was 57.94% less. The dose can be increased in other areas, but the cerebrovascular area is useful because the dose is small.

Study for Automatic Exposure Control Technique (AEC) in SPECT/CT for Reducing Exposure Dose and Influencing Image Quality (SPECT/CT에서 자동노출제어(AEC)를 이용함으로써 얻어지는 영상의 질 평가와 피폭선량 감소에 관한 고찰)

  • Yoon, Seok-Hwan;Lee, Sung-Hwan;Cho, Seong-Wook;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.33-38
    • /
    • 2014
  • Purpose Auto exposure control (AEC) in SPECT/CT automatically controls the exposure dose (mA) according to patient's shape and size. The aim of this study was to evaluate the effect of AEC in SPECT/CT on exposure dose reduction and image quality. Materials and Methods The model of SPECT/CT used in this study was Discovery 670 (GE, USA), Smart mA for AEC; and $^{99m}Tc$ as a radioisotope. To compare SPECT and CT images by CT exposure dose variation, we used a standard technique set at 80, 100, 120, 140 kVp, 10, 30, 50, 100, 150, 200, 250 mA, and AEC at 80, 100, 120, 140 kVp, 10-250 mA. To evaluate resolution and contrast of SPECT images, triple line phantom and flangeless Esser PET phantom were used. For CT images, noise and uniformity were checked by anthropomrphic chest phantom. For dose evaluation to find DLP value, anthropomorphic chest phantom was used and the CT protocol of torso was applied by standard technique (120 kVp, 100 mA) and AEC (120 kVp, 10-250 mA). Results When standard and AEC were applied, the resolutions at SPECT images with attenuation correction (AC) were the same as FWHM by center 3.65 mm, left 3.48 mm, right 3.61 mm. Contrasts of standard and AEC showed no significant difference: standard 53.5, 29.8, 22.5, 15.8, 6.0, AEC 53.5, 29.6, 22.4, 15.7, 6.1 In CT images, noise values at standard and AEC were 15.4 and 18.5 respectively. The application of AEC increases noise but the value of coefficient variation were 33.8, 24.9 respectively, obtaining uniform noise image. The values of DLP at standard and AEC were 426.78 and 352.09 each, which shows that the application of AEC decreases exposure dose more than standard by approximately 18%. Conclusion The results of our study show that there was no difference of AC in SPECT images based on the CT exposure dose variation at SPECT/CT images. It was found that the increased CT exposure dose leads to the improvement of CT image quality but also increases the exposure dose. Thus, the use of AEC in SPECT/CT contributes to obtaining equal AC SPECT images, and uniform noise in CT images while reducing exposure dose.

  • PDF

Measurement of Patient Dose from Computed Tomography Using Physical Anthropomorphic Phantom (물리적 팬텀을 이용한 CT 촬영 환자의 피폭 선량 측정 및 평가)

  • Jang, Ki-Won;Lee, Choon-Sik;Kwon, Jung-Wan;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.3
    • /
    • pp.113-119
    • /
    • 2005
  • The computed tomogrpahy(CT) provides a high quality in images of human body but contributes to the relatively high patient dose. The frequency of CT examination is increasing and, therefore, the concerns about the patient dose are also increasing. In this study the experimental determination of patient dose was performed by using a physical anthropomorphic phantom and thermoluminescent dosimeter(TLD). The measurements were done for the both axial and spiral scan mode. As a result the effective doses for each scan mode were 17.78mSv and 10.01 mSv respectively and the fact that the degree of the reduction in the patient dose depends on the pitch scan parameter was confirmed. The measurement methods suggested in this study can be applied for the reassessment of the patient dose when the technique in CT equipment is developed or the protocol for CT scanning is changed.