• 제목/요약/키워드: CSA expansion admixture

검색결과 13건 처리시간 0.025초

팽창재를 포함한 시멘트 모르터의 팽창 요인 (Expansion Factors of Cement Mortar Containing Expanding Admixture)

  • 황인동;염희남;정윤중
    • 한국세라믹학회지
    • /
    • 제37권6호
    • /
    • pp.576-582
    • /
    • 2000
  • Two type of expanding cement generally referred to as CSA with Hauyne(3CaO 3Al2O3 CaSO4) and Quick lime(CaO). Hauyne is formed to ettringite when there are presented with CaO and CaSO4, and CaO reacts wtih water to form Ca(OH)2. REcently, the mechanism of compensation and expand mortar or concrete tend to same and it has been used improving on its shrink property. The volume of cement paste varies with its water content shrink with drying and re-wetting. Concrete and mortar works are required shrinking compensation and expansion properties to reduce of potential crack. The use of expansion cement may improve on its shrinking volume changes. CSA dosages for shrinking compensation limited by cement weight, but obtained difference expansion rate with varied W/C or inorganic admixture. This paper studies expansion rate according to expansion cement dosages, water and inorganic admixtures as Silica fume. Therefor, the expansion factor has to considered before the application.

  • PDF

고분말도 혼화재를 첨가한 삼성분계 시멘트 콘크리트의 내구성 평가 (Durability Evaluation of Ternary Blend Concrete Mixtures adding Ultra Fine Admixture)

  • 안상혁;전성일;남정희;안지환
    • 한국도로학회논문집
    • /
    • 제15권5호
    • /
    • pp.101-110
    • /
    • 2013
  • PURPOSES : The purpose of this study is to evaluate the durability of ternary blended concrete mixtures adding ultra fine admixture. METHODS : From the literature review, crack was considered as the main distress failure criterion on concrete bridge deck pavement. To reduce the initial crack development due to drying shrinkage, CSA expansion agent and shrink reduction agent were used to ternary blended concrete mixtures as a admixture. Laboratory tests including chloride ion penetration test, surface scaling test, rapid freeze & thaw resistance test, non restrained drying shrinkage and restrained drying shrinkage test were conducted to verify the durability of ternary blended concrete mixtures. RESULTS : Based on the test results, proposed mixtures were verified as high qualified durable materials. Expecially initial drying shrinkage crack was not occurred in ternary blended concrete mixtures with CSA expansion agent. CONCLUSIONS : It is concluded that the durability of proposed ternary blend concrete mixture was acceptable to apply for the concrete bridge deck pavement.

고분말도 광물성 혼화재를 혼입한 삼성분계 결합재의 ASR 저항성 평가 (ASR Resistance of Ternary Blended Binder Adding Ultra Fine Mineral Admixture)

  • 전성일;안상혁;안지환;윤경구;남정희
    • 한국도로학회논문집
    • /
    • 제15권5호
    • /
    • pp.81-89
    • /
    • 2013
  • PURPOSES : This study is to evaluate ASR(alkali silica reactivity) resistance of ternary blended binder adding ultra fine mineral admixture. METHODS : This study analyzes ASR expansion using ASTM C 1260 and 1567. RESULTS : This study showed that the fineness of mineral admixture had no effect on ASR expansion. The expansion of ternary blended binder(UFFA 20%+FGGBS 10%) were below 0.1%, and this binder met the ASR standard. Also when adding the CSA expansion agent, ASR expansion slightly decreased. The expansion of latex modified mixture increased by 80% comparing plain mixture. CONCLUSIONS : Ternary blended binder met the ASR standard, and this binder is available in concrete bridge deck overlay.

CSA계 팽창재를 사용한 SHCC의 역학적 특성 (A Mechanical Properties of SHCC Using CSA Expansive Admixture)

  • 이영오;남상현;차준호;류승현;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.233-234
    • /
    • 2010
  • 팽창재를 사용함에 따라 초기 수축균열을 줄여주고, 팽창에 따른 응력을 부여할 수 있다. 따라서 본 연구에서는 팽창재를 사용한 섬유보강시멘트복합의 팽창재 대체량에 따른 성능 평가 및 거동특성을 평가하고자 하였다.

  • PDF

단위 팽창재량 및 양생 환경요인 변화에 따른 콘크리트의 팽창 특성 (Expansion Properties of Concrete under Various Unit Contents of Expansion Admixture and Curing Conditions)

  • 한천구;류현기;홍상희;김정진
    • 콘크리트학회논문집
    • /
    • 제12권1호
    • /
    • pp.79-88
    • /
    • 2000
  • Usually, the expansive additives is used to prevent the occurrence of drying shrinkage in concrete. However it may sometimes be over-added in field due to the insufficient cognition of constructor's, which may cause the serious problems in concrete structures. In this study the experiments are performed to present the expansion properties of concrete by varying the water to binder ratios, unit contents of expansive additives and curing conditions. By the results, the strength showed an increase with the addition of expansion additives from 30kg/㎥ up to 50kg/㎥, and a great decrease by contraries if the larger amount are added. Also the more the expansion additives were used, the more length change occurred in concrete. In view of the curing conditions, the concrete by air cured appeared a little expansion even the unit expansion additives increased, which showed an opposite inclination of that with standard curing. This could be explained by the less occurrence of hydration in air condition which also lead to the little expansion of concrete. Hence the expansion concrete to be cured in water or moisture condition became an especial important thing. concrete using expansive additives showed that high expansion was taken place with the rise of temperature.

CSA 팽창재를 혼입한 철근보강 모르타르의 인장 경화-연화 특성에 관한 실험적 연구 (Experimental Study on Tension-Hardening and Softening Characteristics in Reinforced Mortar with CSA Expansion Agent)

  • 최세진;안중길;박기태;권성준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권1호
    • /
    • pp.101-110
    • /
    • 2014
  • 팽창재는 콘크리트의 건조/자기수축으로 인한 균열에 매우 효과적인 혼화재료이며 콘크리트 내부 철근에 화학적 프리스트레스를 인가할 수 있다. 본 논문에서는 CSA 팽창재에 의해 화학적 프리스트레스가 도입된 모르타르의 인장경화성능을 평가하였다. 철근으로 내부구속이 이루어진 철근 모르타르 시편에 대하여 일축인장시험을 수행하였으며, 균열거동 특성과 인장경화 특성을 분석하였다. CSA 모르타르에서는 압축강도 및 탄성계수는 약간 감소하였으나, 화학적 압축응력이 철근에 도입되었으며, 일반 모르타르 부재에 비해 167.5% 초기균열하중이 증가하였다. 높은 인장경화특성을 평가하였으며, 기존의 인장연화모델과 실험값을 비교하여 기존 제안식의 보완점을 제시하였다.

CSA 팽창재를 혼입한 강섬유 보강 모르타르의 균열 저항성능 평가 (Evaluation of Crack Resistant Performance in Cement Mortar with Steel Fiber and CSA Expansion Admixture)

  • 안중길;박기태;권성준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권3호
    • /
    • pp.125-132
    • /
    • 2014
  • 강섬유는 콘크리트 부재의 인장영역에 효과적으로 작용하여 균열저항성을 높여주고 역학적 성능을 개선하는 것으로 알려져 있다. 본 연구는 팽창재를 사용한 강섬유 모르타르에 화학적 프리스트레싱을 인가하여 균열저항성 및 역학적 성능을 평가하는 연구이다. 이를 위해 시멘트 바인더의 10%를 치환한 CSA 팽장채가 사용되었으며 체적비 1%의 강섬유를 고려한 시멘트 모르타르 배합이 준비되었다. 기본적인 역학적인 성능평가 외에 노치를 가진 보를 제조하여 초기균열하중 및 파괴에너지를 평가하였다. 실험결과 강섬유와 CSA 팽창재를 혼입한 모르타르에서는 보통 강섬유 모르타르에 비하여 평균 1.75배의 균열저항성 하중이 증가하였으며, 파괴에너지 역시 1.41~1.53배 증가하였다. 최적의 강섬유 체적비와 팽창재의 혼입이 고려된다면 강섬유의 내부 화학적 프리스트레싱을 가진 복합재는 다양한 부재에 사용될 수 있으며, 외부하중에 효과적인 균열저감 기법으로 사용할 수 있다.

Characterizations of High Early-Strength Type Shrinkage Reducing Cement and Calcium Sulfo-aluminate by Using Industrial Wastes

  • Lee, Keon-Ho;Nam, Seong-Young;Min, Seung-Eui;Lee, Hyoung-Woo;Han, Choon;Ahn, Ji-Whan
    • 한국세라믹학회지
    • /
    • 제53권2호
    • /
    • pp.215-221
    • /
    • 2016
  • In this study, the utilization of the by-products of various industries was examined using raw materials of CSA high-functional cement such as coal bottom ash, red mud, phosphate gypsum, etc. Technology to improve energy efficiency and reduce $CO_2$ was developed as part of the manufacturing process; this technology included lower temperature sintering ($150{\sim}200^{\circ}C$) than is used in the OPC cement manufacturing process, replacement of CSA cement with the main raw material bauxite, and a determination of the optimum mix condition. In order to develop CSA cement, a manufacturing system was established in the Danyang plant of the HANIL Cement Co. Ltd., in Korea. About 4,200 tons of low purity expansion agent CSA cement (about 16%) and about 850 tons of the lime-based expansion agent dead burned lime (about 8%) were produced at a rate of 60 tons per hour at the HANIL Cement rotary kiln. To improve the OPC cement properties, samples of 10%, 13%, and 16% of CSA cement were mixed with the OPC cement and the compressive strength and length variation rate of the green cement were examined. When green cement was mixed with each ratio of CSA cement and OPC cement, the compressive strength was improved by about 30% and the expansibility of the green cement was also improved. When green cement was mixed with 16% of CSA cement, the compressive strength was excellent compared with that of OPC cement. Therefore, this study indicates the possibility of a practical use of low-cost CSA cement employing industrial wastes only.

팽창재를 사용한 시멘트 혼합물의 재령별 수화물의 특성과 초기강도 개선 효과 (Hydrate Characteristics of Cement Mixtures with Expansion Additive According to Age and Improvement Effect on Initial Strength)

  • 송태협;박지선;이세현
    • 한국재료학회지
    • /
    • 제23권10호
    • /
    • pp.599-605
    • /
    • 2013
  • CSA, a cement mineral compound that is mainly composed of $3CaO{\cdot}3Al_2O_3{\cdot}CaSO_4$, generates ettringite as a hydration product after a reaction with glass (lime), gypsum and water to speed up the hardening process and enhance the strength and degree of expansion. When used as a cement admixture, there is increased production of ettringite, which can improve the initial strength in the first three days and ameliorate the reduction in the initial strength caused by the use of fly ash in particular. In this study, a hydrate analysis was performed using XRD and SEM after substitution with fly ash (30%) and CSA (8%) with the goal of observing the effect of CSA on the initial strength of a cement mixture containing fly ash. The results of the analysis showed that an addition of CSA promoted the production of ettringite and improved the initial strength, resulting in the generation of hydrates, which can effectively enhance the long-term strength of these materials.