• Title/Summary/Keyword: CRFs

Search Result 68, Processing Time 0.022 seconds

CRFs versus Bi-LSTM/CRFs: Automatic Word Spacing Perspective (CRFs와 Bi-LSTM/CRFs의 비교 분석: 자동 띄어쓰기 관점에서)

  • Yoon, Ho;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-min;Namgoong, Young;Choi, Minseok;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.189-192
    • /
    • 2018
  • 자동 띄어쓰기란 컴퓨터를 사용하여 띄어쓰기가 수행되어 있지 않은 문장에 대해 띄어쓰기를 수행하는 것이다. 이는 자연언어처리 분야에서 형태소 분석 전에 수행되는 과정으로, 띄어쓰기에 오류가 발생할 경우, 형태소 분석이나 구문 분석 등에 영향을 주어 그 결과의 모호성을 높이기 때문에 매우 중요한 전처리 과정 중 하나이다. 본 논문에서는 기계학습의 방법 중 하나인 CRFs(Conditional Random Fields)를 이용하여 자동 띄어쓰기를 수행하고 심층 학습의 방법 중 하나인 양방향 LSTM/CRFs (Bidirectional Long Short Term Memory/CRFs)를 이용하여 자동 띄어쓰기를 수행한 뒤 각 모델의 성능을 비교하고 분석한다. CRFs 모델이 양방향 LSTM/CRFs모델보다 성능이 약간 더 높은 모습을 보였다. 따라서 소형 기기와 같은 환경에서는 CRF와 같은 모델을 적용하여 모델의 경량화 및 시간복잡도를 개선하는 것이 훨씬 더 효과적인 것으로 생각된다.

  • PDF

Korean Named-entity Recognition Using CNN-CRFs (CNN-CRFs를 이용한 한국어 개체명 인식기)

  • You, Yeon-Soo;Park, Hyuk-Ro
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.78-80
    • /
    • 2019
  • 개체명 인식 연구에서 우수한 성능을 보이고 있는 bi-LSTM-CRFs 모델은 처리 속도가 느린 단점이 있고, CNN-CRFs 모델은 한국어 말뭉치를 사용하여 제대로 분석되지 않았다. 본 논문에서는 한국어 개체명 인식 말뭉치를 이용한 CNN-CRFs 모델의 음절 단위 한국어 개체명 인식 방법을 제안한다. 실험 결과 bi-LSTM-CRFs 모델보다 CNN-CRFs 모델의 F1 score가 0.4% 높았고, 27.5% 빠른 처리 속도를 보였다.

  • PDF

Korean Named Entity Recognition based on ELECTRA with CRFs (ELECTRA-CRFs 기반 한국어 개체명 인식기)

  • Hong, Jiyeon;Kim, Hyunwoo J
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.473-476
    • /
    • 2020
  • 개체명 인식에 적용된 대부분의 신경망 모델들에서 CRFs와 결합을 통해 성능 향상을 하였다. 그러나 최근 대용량 데이터로 사전 학습한 모델을 활용하는 경우, 기 학습된 많은 유의미한 파라미터들로 인해 CRFs의 영향력이 비교적 작아졌다. 따라서 본 논문에서는 한국어 대용량 말뭉치로 사전 학습한 ELECTRA 모델에서의 CRFs 가 개체명 인식에 미치는 영향을 확인해보고자 한다. 모델의 입력 단위로 음절 단위와 Wordpiece 단위로 사전 학습된 두 가지의 모델을 사용하여 미세 조정을 통해 개체명 인식을 학습하였다. 실험을 통해서 두 모델에 대하여 각각 CRFs 층의 유무에 따른 성능을 비교해 보았다. 그 결과로 ELECTRA 기반으로 사전 학습된 모델에서 CRFs를 통한 F1-점수 향상을 보였다.

  • PDF

High Speed Korean Dependency Analysis Using Cascaded Chunking (다단계 구단위화를 이용한 고속 한국어 의존구조 분석)

  • Oh, Jin-Young;Cha, Jeong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.103-111
    • /
    • 2010
  • Syntactic analysis is an important step in natural language processing. However, we cannot use the syntactic analyzer in Korean for low performance and without robustness. We propose new robust, high speed and high performance Korean syntactic analyzer using CRFs. We treat a parsing problem as a labeling problem. We use a cascaded chunking for Korean parsing. We label syntactic information to each Eojeol at each step using CRFs. CRFs use part-of-speech tag and Eojeol syntactic tag features. Our experimental results using 10-fold cross validation show significant improvement in the robustness, speed and performance of long Korea sentences.

Named-entity Recognition Using Bidirectional LSTM CRFs (Bidirectional LSTM CRFs를 이용한 한국어 개체명 인식)

  • Song, Chi-Yun;Yang, Sung-Min;Kang, Sangwoo
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.321-323
    • /
    • 2017
  • 개체명 인식은 문서 내에서 고유한 의미를 갖는 인명, 기관명, 지명, 시간, 날짜 등을 추출하여 그 종류를 결정하는것을 의미한다. Bidirectional LSTM CRFs 모델은 연속성을 갖는 데이터에 가장 적합한 RNN기반의 심층 학습모델로서 개체명 인식 연구에 가장 우수한 성능을 보여준다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs 모델을 사용하고, 입력 자질로 단어뿐만 아니라 품사 임베딩 모델과, 개체명 사전을 활용하여 입력 자질을 구성한다. 또한 입력 자질에 대한 벡터의 크기를 최적화 하여 기본 모델보다 성능이 향상되었음을 증명하였다.

  • PDF

Automatic Word Spacing for Korean Using CRFs with Korean Features (한국어 특성과 CRFs를 이용한 자동 띄어쓰기 시스템)

  • Lee, Hyun-Woo;Cha, Jeong-Won
    • MALSORI
    • /
    • no.65
    • /
    • pp.125-141
    • /
    • 2008
  • In this work, we propose an automatic word spacing system for Korean using conditional random fields (CRFs) with Korean features. We map a word spacing problem into a classification problem in our work. We build a basic system which uses CRFs and Eumjeol bigram. After then, we analyze the result of inner-test. We extend a basic system added by some Korean features which are Josa, Eomi and two head Eumjeols of word extracting from lexicon. From the results of experiment, we can see that the proposed method is better than previous methods. Additionally the proposed method will be able to use mobile and speech applications because of very small size of model.

  • PDF

Korean Semantic Role Labeling Based on Bidirectional LSTM CRFs Using the Semantic Label Distribution of Syllables (음절의 의미역 태그 분포를 이용한 Bidirectional LSTM CRFs 기반의 한국어 의미역 결정)

  • Yoon, Jungmin;Bae, Kyoungman;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.324-329
    • /
    • 2016
  • 의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 것이다. 최근 의미역 결정 연구에는 의미역 말뭉치와 기계학습 알고리즘을 이용한 연구가 주를 이루고 있다. 본 논문에서는 순차적 레이블링 영역에서 좋은 성능을 보이고 있는 Bidirectional LSTM-CRFs 기반으로 음절의 의미역 태그 분포를 고려한 의미역 결정 모델을 제안한다. 제안한 음절의 의미역 태그 분포를 고려한 의미역 결정 모델은 분포가 고려되지 않은 모델에 비해 2.41%p 향상된 66.13%의 의미역 결정 성능을 보였다.

  • PDF

Named-entity Recognition Using Bidirectional LSTM CRFs (Bidirectional LSTM CRFs를 이용한 한국어 개체명 인식)

  • Song, Chi-Yun;Yang, Sung-Min;Kang, Sangwoo
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.321-323
    • /
    • 2017
  • 개체명 인식은 문서 내에서 고유한 의미를 갖는 인명, 기관명, 지명, 시간, 날짜 등을 추출하여 그 종류를 결정하는 것을 의미한다. Bidirectional LSTM CRFs 모델은 연속성을 갖는 데이터에 가장 적합한 RNN기반의 심층 학습모델로서 개체명 인식 연구에 가장 우수한 성능을 보여준다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs 모델을 사용하고, 입력 자질로 단어뿐만 아니라 품사 임베딩 모델과, 개체명 사전을 활용하여 입력 자질을 구성한다. 또한 입력 자질에 대한 벡터의 크기를 최적화 하여 기본 모델보다 성능이 향상되었음을 증명하였다.

  • PDF

Korean Semantic Role Labeling Based on Bidirectional LSTM CRFs Using the Semantic Label Distribution of Syllables (음절의 의미역 태그 분포를 이용한 Bidirectional LSTM CRFs 기반의 한국어 의미역 결정)

  • Yoon, Jungmin;Bae, Kyoungman;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.324-329
    • /
    • 2016
  • 의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 것이다. 최근 의미역 결정 연구에는 의미역 말뭉치와 기계학습 알고리즘을 이용한 연구가 주를 이루고 있다. 본 논문에서는 순차적 레이블링 영역에서 좋은 성능을 보이고 있는 Bidirectional LSTM-CRFs 기반으로 음절의 의미역 태그 분포를 고려한 의미역 결정 모델을 제안한다. 제안한 음절의 의미역 태그 분포를 고려한 의미역 결정 모델은 분포가 고려되지 않은 모델에 비해 2.41%p 향상된 66.13%의 의미역 결정 성능을 보였다.

  • PDF

Expansion of Word Representation for Named Entity Recognition Based on Bidirectional LSTM CRFs (Bidirectional LSTM CRF 기반의 개체명 인식을 위한 단어 표상의 확장)

  • Yu, Hongyeon;Ko, Youngjoong
    • Journal of KIISE
    • /
    • v.44 no.3
    • /
    • pp.306-313
    • /
    • 2017
  • Named entity recognition (NER) seeks to locate and classify named entities in text into pre-defined categories such as names of persons, organizations, locations, expressions of times, etc. Recently, many state-of-the-art NER systems have been implemented with bidirectional LSTM CRFs. Deep learning models based on long short-term memory (LSTM) generally depend on word representations as input. In this paper, we propose an approach to expand word representation by using pre-trained word embedding, part of speech (POS) tag embedding, syllable embedding and named entity dictionary feature vectors. Our experiments show that the proposed approach creates useful word representations as an input of bidirectional LSTM CRFs. Our final presentation shows its efficacy to be 8.05%p higher than baseline NERs with only the pre-trained word embedding vector.